Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38611474

ABSTRACT

This study aimed to investigate the phytochemistry of lemongrass (Cymbopogon citratus) inoculated with Azospirillum brasilense and grown in lead (Pb)-contaminated soil to assess its responses to inoculation under different Pb levels. The experimental design was completely randomized in a 2 × 5 factorial scheme: two levels of A. brasilense (absence or presence) and five Pb levels. After four months of treatment, the following were analyzed: total and reducing sugars, total phenolic content, flavonoids, antioxidant activity, antioxidant enzymes, proline, and essential oil (EO) content and composition. Soil Pb levels and A. brasilense inoculation affected phytochemicals in lemongrass plants. Azospirillum inoculation reduced total sugars in the roots at all soil Pb levels, while increasing Pb levels favored a rise in sugar contents. There was an increase in flavonoid content in treatments associated with Pb and inoculated with A. brasilense. Antioxidant capacity was lower at lower Pb levels, regardless of bacterial inoculation. Enzymatic response was mainly affected by Pb concentrations between 50 and 100 mg kg-1 soil. EO content was influenced by soil Pb levels, with higher EO production at 500 mg Pb kg-1 soil and without A. brasilense inoculation. Overall, lemongrass cultivation in Pb-contaminated areas can be an alternative to phytoremediation and EO production for the industry.

2.
Mol Biotechnol ; 53(3): 315-25, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22421886

ABSTRACT

Abiotic stresses are among the most important factors that affect food production. One important step to face these environmental challenges is the transcriptional modulation. Quantitative real-time PCR is a rapid, sensitive, and reliable method for the detection of mRNAs and it has become a powerful tool to mitigate plant stress tolerance; however, suitable reference genes are required for data normalization. Reference genes for coffee plants during nitrogen starvation, salinity and heat stress have not yet been reported. We evaluated the expression stability of ten candidate reference genes using geNorm PLUS, NormFinder, and BestKeeper softwares, in plants submitted to nitrogen starvation, salt and heat stress. EF1, EF1α, GAPDH, MDH, and UBQ10 were ranked as the most stable genes in all stresses and software analyses, while RPL39 and RPII were classified as the less reliable references. For reference gene validation, the transcriptional pattern of a Coffea non-symbiotic hemoglobin (CaHb1) was analyzed using the two new recommended and the most unstable gene references for normalization. The most unstable gene may lead to incorrect interpretation of CaHb1 transcriptional analysis. Here, we recommend two new reference genes in Coffea for use in data normalization in abiotic stresses: MDH and EF1.


Subject(s)
Coffea/genetics , Gene Expression Regulation, Plant , Genes, Plant , Hot Temperature , Nitrogen/metabolism , Sodium Chloride , Coffea/metabolism , Food Handling , Gene Expression Profiling/methods , RNA, Plant/genetics , RNA, Plant/isolation & purification , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sequence Analysis, RNA , Software , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...