Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 418-429, 2019 03.
Article in English | MEDLINE | ID: mdl-30296500

ABSTRACT

Colorectal cancer (CRC) is frequently a lethal disease because of metastasis. Actin cytoskeletal rearrangement is an essential step in cell migration during activation of the epithelial-mesenchymal transition (EMT) program, which is associated with metastatic properties of cancer cells. Cofilin-1 protein modulates actin dynamics by promoting actin treadmilling, thereby driving membrane protrusion and cell migration and invasion. However, the role of cofilin-1 during EMT in CRC is unknown. Here, we show that cofilin-1 and p-cofilin-1 have distinct subcellular distribution in EMT cells, as determined by super-resolution microscopy images, indicating distinct roles in different areas of cells. Silenced cofilin-1 cells treated with TGF-ß (siCofilin-1/TGF-ß) evaded p-LIMK2-p-cofilin-1 status, leading to recovery of E-cadherin and claudin-3 at the cell-cell contact and their respective protein levels, actin reorganization, and decreased mesenchymal protein level. Furthermore, siCofilin-1/TGF-ß cells exhibited decreased migration and invasion rates as well as MMP-2 and -9 activity and augmented focal adhesion size. The expression of an inactive phospho-cofilin-1 mimetic (S3E) reduced E-cadherin and claudin-3 in cell-cell contacts, reduced their protein levels, and increased vimentin protein. Based on our findings, we suggest that cofilin-1 is crucial to switching from epithelial to mesenchymal-like morphology and cell migration and invasion by regulating actin cytoskeleton organization through activation of RhoA-LIMK2-cofilin-1 signaling, impacting the cell-cell adhesion organization of colon cancer cells in EMT.


Subject(s)
Actin Cytoskeleton/metabolism , Cofilin 1/metabolism , Colorectal Neoplasms/metabolism , Actins/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Cell Adhesion/physiology , Cell Line, Tumor , Cell Movement/physiology , Claudin-3/metabolism , Colorectal Neoplasms/pathology , Cytoskeleton/metabolism , Epithelial-Mesenchymal Transition/physiology , Humans , Lim Kinases/metabolism , Neoplasm Invasiveness , Signal Transduction , Transforming Growth Factor beta/metabolism , Vimentin/metabolism , rhoA GTP-Binding Protein/metabolism
2.
Biofactors ; 45(1): 24-34, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30521071

ABSTRACT

The effects of radiation are known to be potentiated by N-3 polyunsaturated fatty acids, which modulate several signaling pathways, but the molecular mechanisms through which these fatty acids enhance the anticancer effects of irradiation in colorectal cancer (CRC) treatment remain poorly elucidated. Here, we aimed to ascertain whether the fatty acid docosahexaenoic acid (DHA) exerts a modulating effect on the response elicited by radiation treatment (RT). Two CRC cell lines, Caco-2 and HT-29, were exposed to RT, DHA, or both (DHA + RT) for various times, and then cell viability, proliferation, and clonogenicity were assessed. Moreover, cell cycle, apoptosis, and necrosis were analyzed using flow cytometry, and the involvement of WNT/ß-catenin signaling was investigated by immunofluorescence to determine nuclear ß-catenin, GSK3ß phosphorylation status, and TCF/LEF-activity reporter. DHA and RT applied separately diminished the viability of both HT-29 and Caco-2 cells, and DHA + RT caused a further reduction in proliferation mainly in HT-29 cells, particularly in terms of colony formation. Concomitantly, our results verified cell cycle arrest in G0/G1 phase, a reduction of cyclin D1 expression, and a decrease in GSK3ß phosphorylation after the combined treatment. Furthermore, immunofluorescence quantification revealed that nuclear ß-catenin was increased in RT-exposed cells, but this effect was abrogated in cells exposed to DHA + RT, and the results of TCF/LEF-activity assays confirmed that DHA attenuated the increase in nuclear ß-catenin activity induced by irradiation. Our finding shows that DHA applied in combination with RT enhanced the antitumor effects of irradiation on CRC cells, and that the underlying mechanism involved the WNT/ß-catenin pathway. © 2018 BioFactors, 45(1):24-34, 2019.


Subject(s)
Cell Cycle Checkpoints/drug effects , Docosahexaenoic Acids/pharmacology , Gamma Rays , Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3 beta/genetics , beta Catenin/genetics , Apoptosis/drug effects , Apoptosis/radiation effects , Caco-2 Cells , Cell Cycle Checkpoints/genetics , Cell Cycle Checkpoints/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Colony-Forming Units Assay , Cyclin D1/genetics , Cyclin D1/metabolism , Dose-Response Relationship, Drug , Glycogen Synthase Kinase 3 beta/metabolism , HT29 Cells , Humans , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Phosphorylation/drug effects , Phosphorylation/radiation effects , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
3.
Tissue Barriers ; 3(3): e1017688, 2015.
Article in English | MEDLINE | ID: mdl-26451338

ABSTRACT

Colorectal cancer represents the fourth highest mortality rate among cancer types worldwide. An understanding of the molecular mechanisms that regulate their progression can prevents or reduces mortality due to this disease. Epithelial cells present an apical junctional complex connected to the actin cytoskeleton, which maintains the dynamic properties of this complex, tissue architecture and cell homeostasis. Several studies have indicated that apical junctional complex alterations and actin cytoskeleton disorganization play a critical role in epithelial cancer progression. However, few studies have examined the existence of an interrelation between these 2 components, particularly in colorectal cancer. This review discusses the recent progress toward elucidating the role of alterations of apical junctional complex constituents and of modifications of actin cytoskeleton organization and discusses how these events are interlinked to modulate cellular responses related to colorectal cancer progression toward successful metastasis.

4.
J Cell Biochem ; 115(12): 2175-87, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25103643

ABSTRACT

Radiotherapy remains a major approach to adjuvant therapy for patients with advanced colorectal cancer, however, the fractionation schedules frequently allow for the repopulation of surviving tumors cells, neoplastic progression, and subsequent metastasis. The aim of the present study was to analyze the transgenerational effects induced by radiation and evaluate whether it could increase the malignant features on the progeny derived from irradiated parental colorectal cancer cells, Caco-2, HT-29, and HCT-116. The progeny of these cells displayed a differential radioresistance as seen by clonogenic and caspase activation assay and had a direct correlation with survivin expression as observed by immunoblotting. Immunofluorescence showed that the most radioresistant progenies had an aberrant morphology, disturbance of the cell-cell adhesion contacts, disorganization of the actin cytoskeleton, and vimentin filaments. Only the progeny derived from intermediary radioresistant cells, HT-29, reduced the E-cadherin expression and overexpressed ß-catenin and vimentin with increased cell migration, invasion, and metalloprotease activation as seen by immunoblotting, wound healing, invasion, and metalloprotease activity assay. We also observed that this most aggressive progeny increased the Wnt/ß-catenin-dependent TCF/LEF activity and underwent an upregulation of mesenchymal markers and downregulation of E-cadherin, as determined by qRT-PCR. Our results showed that the intermediate radioresistant cells can generate more aggressive cellular progeny with the EMT-like phenotype. The Wnt/ß-catenin pathway may constitute an important target for new adjuvant treatment schedules with radiotherapy, with the goal of reducing the migratory and invasive potential of the remaining cells after treatment.


Subject(s)
Cell Movement/radiation effects , Epithelial-Mesenchymal Transition/radiation effects , Wnt Signaling Pathway , Actin Cytoskeleton/metabolism , Antigens, CD , Apoptosis , Caco-2 Cells , Cadherins/metabolism , Caspases/metabolism , Cell Shape , Colorectal Neoplasms , HT29 Cells , Humans , Inhibitor of Apoptosis Proteins/metabolism , Neoplasm Invasiveness , Radiation Tolerance , Survivin , Vimentin/metabolism , beta Catenin/metabolism
5.
J Membr Biol ; 247(1): 23-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24186357

ABSTRACT

Studies have reported that Na,K-ATPase interacts with E-cadherin to stabilize (AJs) and regulate the expression of claudins, the main proteins present in the tight junction (TJ) in epithelial cells containing caveolae. However, the role of this ATPase in the regulation of the AJ and TJ proteins in colorectal cancer cells as well as the molecular events underlying this event in a caveolae-independent system remain undefined. In the present study, we used ouabain, a classic drug known to inhibit Na,K-ATPase, and Caco-2 cells, which are a well-established human colorectal cancer model that does not exhibit caveolae. We demonstrated that ouabain treatment resulted in a reduction of the ß1 Na,K-ATPase protein and cell redistribution of the AJ proteins E-cadherin and ß-catenin, as well as the α1 Na,K-ATPase subunit. Furthermore, ouabain increased claudin-3 protein levels, impaired the TJ barrier function and increased cell viability and proliferation during the early stages of treatment. Additionally, the observed ouabain-induced events were dependent on the activation of ERK1/2 signaling; but in contrast to previous studies, this signaling cascade was caveolae-independent. In conclusion, our findings strongly suggest that α1 and ß1 Na,K-ATPase downregulation and ERK1/2 activation induced by ouabain are interlinked events that play an important role during cell-cell adhesion loss, which is an important step during the tumor progression of colorectal carcinomas.


Subject(s)
Caveolae/metabolism , Colorectal Neoplasms/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Ouabain/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Adherens Junctions/drug effects , Adherens Junctions/metabolism , Cadherins/metabolism , Cell Line, Tumor , Cell Proliferation , Claudin-3 , Colorectal Neoplasms/genetics , Humans , Signal Transduction , Tight Junctions/drug effects , Tight Junctions/metabolism
6.
Cancer Chemother Pharmacol ; 68(1): 227-38, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20927523

ABSTRACT

PURPOSE: Aberrant protein glycosylation and disassembly of E-cadherin-mediated cell-cell adhesion are characteristics of epithelial cancer. However, the relationship between these two events in colorectal cancer remains to be defined. In this study, we analyzed whether N-glycan expression is crucial for the loss of E-cadherin-mediated cell-cell adhesion in human colorectal cancer cells. METHODS: Differentiated Caco-2 and undifferentiated HCT-116 colon cancer cells were used as models of stable and unstable adherens junctions (AJs), respectively. Complex-type N-glycans were detected using the lectins E-PHA (Phaseolus vulgaris E.) and L-PHA (Phaseolus vulgaris L.). To study E-cadherin-mediated AJ assembly, we examined the effects of swainsonine, an inhibitor of α-mannosidase II, and tunicamycin, a drug that inhibits the biosynthesis of N-glycans, via western blot, immunofluorescence, differential extraction in Triton X-100, and electron microscopy. Cell proliferation and apoptosis were examined by crystal violet staining and flow cytometry, respectively. RESULTS: We observed positive labeling for E-PHA and L-PHA lectins in both cell lines; however, HCT-116 cells had increased E-cadherin-linked complex-type N-glycans. Interestingly, tunicamycin, but not swainsonine, was able to induce functional E-cadherin-mediated cell-cell adhesion in undifferentiated HCT-116 cells, as shown by the increased association of E-cadherin with the actin cytoskeleton. Moreover, in HCT-116 cells, tunicamycin also induced the formation of tight cell-cell contacts, and it inhibited cell proliferation without triggering apoptosis. CONCLUSIONS: Collectively, our results demonstrate for the first time that altered N-glycan expression plays an important role in the loss of AJ stability in undifferentiated colorectal cancer cells and that this loss may be associated with the progression of colorectal cancer.


Subject(s)
Adherens Junctions/drug effects , Antineoplastic Agents/pharmacology , Cadherins/physiology , Cell Proliferation/drug effects , Colonic Neoplasms/pathology , Tunicamycin/pharmacology , Animals , Apoptosis/drug effects , Caco-2 Cells , Calcium/metabolism , Cell Adhesion/drug effects , Colonic Neoplasms/physiopathology , Glycosylation , HCT116 Cells , Humans , Mice , Polysaccharides/physiology
7.
J Cancer Res Clin Oncol ; 136(11): 1773-82, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20204404

ABSTRACT

PURPOSE: During colorectal cancer progression, the loss of differentiation and cell-cell adhesion as well as a higher migratory potential are well-defined features; however, the signaling mechanism governing these events is not fully elucidated. The aim of this study was to investigate the role that PI3K and downstream effectors play in controlling colon cancer malignant phenotypes. METHODS: HCT-116 cells, a human model of colon cancer, which are highly metastatic and undifferentiated, were treated with LY294002, a specific inhibitor of PI3K. Cell differentiation and apical junctional complex (AJC) formation were monitored using alkaline phosphatase and electron microscopy analysis. Immunofluorescence and Western blotting were used to accompany the subcellular localization of AJC proteins. PI3K downstream molecules were analyzed by western blotting, and proliferation, wound healing, and colony formation techniques to determine malignant phenotype alterations. RESULTS: PI3K inhibition increased alkaline phosphatase activity, led to an enterocyte-like growth and formed a functional AJC. LY294002 treatment was able to recruit E-cadherin, ß-catenin, claudin-3, and ZO-1 to the cell-cell contact region, and this effect was essential for AJC assembly and association of these proteins to the cytoskeleton. Furthermore, we provided evidence that PI3K inhibition leads to a decrease in p-Akt and p-GSK-3ß and increased p-ß-catenin levels, which in turn controlled cell proliferation, motility, and colony formation. CONCLUSION: Our results demonstrate that PI3K/Akt and GSK-3ß prevents in a differential fashion the malignant phenotype of HCT-116 colorectal cancer cells, which could constitute a potential therapeutic target for treatment of this cancer type.


Subject(s)
Chromones/therapeutic use , Colorectal Neoplasms/pathology , Glycogen Synthase Kinase 3/metabolism , Morpholines/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Alkaline Phosphatase/antagonists & inhibitors , Cadherins/metabolism , Cell Division/drug effects , Cell Line, Tumor , Colony-Forming Units Assay , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/genetics , Enzyme Inhibitors/therapeutic use , Glycogen Synthase Kinase 3 beta , Humans , Phenotype , Wound Healing/drug effects , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...