Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 10(11)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33217984

ABSTRACT

In the present study, we aimed to determine the antimicrobial resistance and molecular typing of Staphylococcus aureus recovered from transient and persistent intramammary infections and nares/muzzles in dairy cows. We investigated the antimicrobial resistance of 189 S. aureus strains using a broad antimicrobial susceptibility profile. Furthermore, 107 S. aureus isolates were strain-typed using staphylococcal protein-A (spa) typing. A large proportion of strains exhibited multidrug resistance to antimicrobials, including resistance to critically important antimicrobials, although no methicillin-resistant S. aureus strains were found. Our study did not strengthen the idea that extramammary niches (i.e., nares/muzzles) are an important source of S. aureus for bovine mastitis. A discrepancy in the antimicrobial resistance between S. aureus strains isolated from nares/muzzles and milk samples was observed. Furthermore, S. aureus isolates from transient and persistent intramammary infections (IMIs) did not differ by spa typing, suggesting that the persistence of bovine IMIs was determined by cow factors. Thus, the high level of multidrug-resistant S. aureus found in the two herds, considered together with the predominance of a well udder-adapted S. aureus strain, may contribute to our knowledge of the history of the high prevalence of mastitis caused by S. aureus, which is of great concern for animal and public health.

2.
Front Microbiol ; 11: 843, 2020.
Article in English | MEDLINE | ID: mdl-32477295

ABSTRACT

Mycobacterium bovis is the main causative agent of zoonotic tuberculosis in humans and frequently devastates livestock and wildlife worldwide. Previous studies suggested the existence of genetic groups of M. bovis strains based on limited DNA markers (a.k.a. clonal complexes), and the evolution and ecology of this pathogen has been only marginally explored at the global level. We have screened over 2,600 publicly available M. bovis genomes and newly sequenced four wildlife M. bovis strains, gathering 1,969 genomes from 23 countries and at least 24 host species, including humans, to complete a phylogenomic analyses. We propose the existence of four distinct global lineages of M. bovis (Lb1, Lb2, Lb3, and Lb4) underlying the current disease distribution. These lineages are not fully represented by clonal complexes and are dispersed based on geographic location rather than host species. Our data divergence analysis agreed with previous studies reporting independent archeological data of ancient M. bovis (South Siberian infected skeletons at ∼2,000 years before present) and indicates that extant M. bovis originated between 715 and 3,556 years BP, with later emergence in the New World and Oceania, likely influenced by trades among countries.

3.
Vet Med Sci ; 6(3): 433-440, 2020 08.
Article in English | MEDLINE | ID: mdl-32319231

ABSTRACT

Although Brazil has one of the largest buffalo populations in the Americas, buffalo leptospirosis is still poorly explored when compared to that in bovines; thus, the aim of this research was to carry out a large serological study for leptospirosis in this species in the Brazilian Amazon. For this, we collected 1,405 serum samples from buffaloes raised in the Amazon delta region, which is considered a major area of buffalo production in Brazil. The test used was a microscopic agglutination test (MAT) adopting 34 Leptospira antigens, some of which have never been tested for buffaloes in Brazil, including autochthonous strains; in total, 20 serogroups were evaluated. From the total of 1,405 serum samples, 894 (63.6%) reacted in the MAT to at least one of the 20 serogroups, and 511 (36.4%) did not react. The serogroups Sejroe, Autumnalis and Pomona were the most prevalent, with titres ranging from 100 to 12,800, and the autochthonous strains used were not significant in relation to the reference serovars. Leptospirosis in buffaloes seems to have a serological profile similar to leptospirosis in cattle, mainly due to the prevalence of the Sejroe serogroup; however, the results of this study suggested that in the Brazilian Amazon, Leptospira strains that are serologically distinct from the autochthonous strains isolated in the southeastern region of Brazil may be circulating in these animals. Other serovars could also be inserted into the panel of antigens used in MAT for serological studies on buffaloes.


Subject(s)
Buffaloes , Leptospira/isolation & purification , Leptospirosis/veterinary , Animals , Brazil/epidemiology , Leptospira/classification , Leptospira/genetics , Leptospirosis/blood , Leptospirosis/epidemiology , Prevalence , Serogroup
4.
BMC Genomics ; 20(1): 1030, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31888476

ABSTRACT

BACKGROUND: Mycobacterium pinnipedii, a member of the Mycobacterium tuberculosis Complex (MTBC), is capable of infecting several host species, including humans. Recently, ancient DNA from this organism was recovered from pre-Columbian mummies of Peru, sparking debate over the origin and frequency of tuberculosis in the Americas prior to European colonization. RESULTS: We present the first comparative genomic study of this bacterial species, starting from the genome sequencing of two M. pinnipedii isolates (MP1 and MP2) obtained from different organs of a stranded South American sea lion. Our results indicate that MP1 and MP2 differ by 113 SNPs (single nucleotide polymorphisms) and 46 indels, constituting the first report of a mixed-strain infection in a sea lion. SNP annotation analyses indicate that genes of the VapBC family, a toxin-antitoxin system, and genes related to cell wall remodeling are under evolutionary pressure for protein sequence change in these strains. OrthoMCL analysis with seven modern isolates of M. pinnipedii shows that these strains have highly similar proteomes. Gene variations were only marginally associated with hypothetical proteins and PE/PPE (proline-glutamate and proline-proline-glutamate, respectively) gene families. We also detected large deletions in ancient and modern M. pinnipedii strains, including a few occurring only in modern strains, indicating a process of genome reduction occurring over the past one thousand years. Our phylogenomic analyses suggest the existence of two modern clusters of M. pinnipedii associated with geographic location, and possibly host species, and one basal node associated with the ancient M. pinnipedii strains. Previously described MiD3 and MiD4 deletions may have occurred independently, twice, over the evolutionary course of the MTBC. CONCLUSION: The presence of superinfection (i.e. mixed-strain infection) in this sea lion suggests that M. pinnipedii is highly endemic in this population. Mycobacterium pinnipedii proteomes of the studied isolates showed a high degree of conservation, despite being under genomic decay when compared to M. tuberculosis. This finding indicates that further genomes need to be sequenced and analyzed to increase the chances of finding variably present genes among strains or that M. pinnipedii genome remodeling occurred prior to bacterial speciation.


Subject(s)
Genome, Bacterial , Genomics , Mycobacterium/genetics , Sea Lions/microbiology , Superinfection , Tuberculosis/veterinary , Animals , Computational Biology/methods , Genetic Markers , Genomics/methods , Mycobacterium/classification , Mycobacterium/metabolism , Phylogeny , Proteome , Proteomics/methods , Sequence Deletion
5.
Front Microbiol ; 8: 2389, 2017.
Article in English | MEDLINE | ID: mdl-29259589

ABSTRACT

Mycobacterium bovis causes bovine tuberculosis and is the main organism responsible for zoonotic tuberculosis in humans. We performed the sequencing, assembly and annotation of a Brazilian strain of M. bovis named SP38, and performed comparative genomics of M. bovis genomes deposited in GenBank. M. bovis SP38 has a traditional tuberculous mycobacterium genome of 4,347,648 bp, with 65.5% GC, and 4,216 genes. The majority of CDSs (2,805, 69.3%) have predictive function, while 1,206 (30.07%) are hypothetical. For comparative analysis, 31 M. bovis, 32 M. bovis BCG, and 23 Mycobacterium tuberculosis genomes available in GenBank were selected. M. bovis RDs (regions of difference) and Clonal Complexes (CC) were identified in silico. Genome dynamics of bacterial groups were analyzed by gene orthology and polymorphic sites identification. M. bovis polymorphic sites were used to construct a phylogenetic tree. Our RD analyses resulted in the exclusion of three genomes, mistakenly annotated as virulent M. bovis. M. bovis SP38 along with strain 35 represent the first report of CC European 2 in Brazil, whereas two other M. bovis strains failed to be classified within current CC. Results of M. bovis orthologous genes analysis suggest a process of genome remodeling through genomic decay and gene duplication. Quantification, pairwise comparisons and distribution analyses of polymorphic sites demonstrate greater genetic variability of M. tuberculosis when compared to M. bovis and M. bovis BCG (p ≤ 0.05), indicating that currently defined M. tuberculosis lineages are more genetically diverse than M. bovis CC and animal-adapted MTC (M. tuberculosis Complex) species. As expected, polymorphic sites annotation shows that M. bovis BCG are subjected to different evolutionary pressures when compared to virulent mycobacteria. Lastly, M. bovis phylogeny indicates that polymorphic sites may be used as markers of M. bovis lineages in association with CC. Our findings highlight the need to better understand host-pathogen co-evolution in genetically homogeneous and/or diverse host populations, considering the fact that M. bovis has a broader host range when compared to M. tuberculosis. Also, the identification of M. bovis genomes not classified within CC indicates that the diversity of M. bovis lineages may be larger than previously thought or that current classification should be reviewed.

SELECTION OF CITATIONS
SEARCH DETAIL
...