Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Auton Neurosci ; 227: 102675, 2020 09.
Article in English | MEDLINE | ID: mdl-32474374

ABSTRACT

Considering the antioxidant, neuroprotective, inflammatory and nitric oxide modulatory actions of quercetin, the aim of this study was to test the effect of quercetin administration in drinking water (40 mg/day/rat) on neuronal nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP), overall population of myenteric neurons (HuC/D) and nitric oxide (NO) levels in the jejunal samples from diabetic rats. Male Wistar rats were distributed into four groups (8 rats per group): euglycemic (E), euglycemic administered with quercetin (E+Q), diabetic (D) and diabetic administered with quercetin (D+Q). Rats were induced to diabetes with streptozotocin (35mg/kg/iv) and, after 120 days, the proximal jejunum were collected and processed for immunohistochemical (VIP, nNOS and HuC/D) and chemiluminescence (quantification of tissue NO levels) techniques. Diabetes mellitus reduced the number of nNOS-IR (immunoreactive) (p <0.05) and HuC/D-IR (p <0.001) neurons, however, promoted an increased morphometric area of nNOS-IR neurons (p <0.001) and VIP-IR varicosities (p <0.05). In D+Q group, neuroplasticity effects were observed on HuC/D-IR neurons, accompanied by a reduction of cell body area of neurons nNOS- and VIP-IR varicosities (p <0.05). The NO levels were increased in the E+Q (p <0.05) and D+Q group (p <0.001) compared to the control group. In conclusion, the results showed that quercetin supplementation increased the bioavailability of NO in the jejunum in euglycemic and mitigate the effects of diabetes on nNOS-IR neurons and VIP-IR varicosities in the myenteric plexus of diabetic rats.


Subject(s)
Antioxidants/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Jejunum/drug effects , Myenteric Plexus/drug effects , Neuronal Plasticity/drug effects , Neurons/drug effects , Nitric Oxide Synthase Type I/drug effects , Nitric Oxide/metabolism , Quercetin/pharmacology , Vasoactive Intestinal Peptide/drug effects , Animals , Antioxidants/administration & dosage , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Male , Myenteric Plexus/pathology , Quercetin/administration & dosage , Rats , Rats, Wistar
2.
Biol Trace Elem Res ; 187(1): 107-119, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29705835

ABSTRACT

Appropriate doses of fluoride (F) have therapeutic action against dental caries, but higher levels can cause disturbances in soft and mineralized tissues. Interestingly, the susceptibility to the toxic effects of F is genetically determined. This study evaluated the effects of F on the liver proteome of mice susceptible (A/J) or resistant (129P3/J) to the effects of F. Weanling male A/J (n = 12) and 129P3/J (n = 12) mice were housed in pairs and assigned to two groups given low-F food and drinking water containing 15 or 50 ppm F for 6 weeks. Liver proteome profiles were examined using nano-LC-ESI-MS/MS. Difference in expression among the groups was determined using the PLGS software. Treatment with the lower F concentration provoked more pronounced alterations in fold change in liver proteins in comparison to the treatment with the higher F concentration. Interestingly, most of the proteins with fold change upon treatment with 15 ppm F were increased in the A/J mice compared with their 129P3/J counterparts, suggesting an attempt of the former to fight the deleterious effects of F. However, upon treatment with 50 ppm F, most proteins with fold change were decreased in the A/J mice compared with their 129P3/J counterparts, especially proteins related to oxidative stress and protein folding, which might be related to the higher susceptibility of the A/J animals to the deleterious effects of F. Our findings add light into the mechanisms underlying genetic susceptibility to fluorosis.


Subject(s)
Drinking Water/chemistry , Fluorides/pharmacology , Genetic Predisposition to Disease , Liver/drug effects , Proteome/drug effects , Administration, Oral , Animals , Fluorides/administration & dosage , Liver/metabolism , Mice , Mice, Inbred Strains , Proteome/metabolism
3.
Microsurgery ; 35(3): 227-34, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25445241

ABSTRACT

Standard vein graft (SVG) and inside out vein graft (IOVG) techniques to promote peripheral nerve regeneration have been widely studied since last two decades. In this experimental study, we attempted to compare these two techniques and analyze the differences in the expression of the neurotrophins during peripheral nerve regeneration. Thirty-six male Wistar rats were used in this sciatic nerve transection model and were divided into two experimental groups (SVG and IOVG) and one sham operated control group. An overall defect of 10 mm was made in the sciatic nerve of the animals in the experimental groups. Each group consisted of two time intervals of 6 and 12 weeks (n = 6). After each experimental interval, sciatic functional index (SFI) along with area and diameter of the axons and fibers of each group were calculated. Muscle mass measurements were also evaluated to see any functional recovery in the groups. Expression of neurotrophins in the graft and distal stump were analyzed with the help of RT-PCR. SFI obtained from walking track analysis showed poor motor recovery in the experimental groups during both time intervals. No significant differences in the histological, morphometric (P > 0.05), and muscle mass measurements (P > 0.05) between the two experimental groups were observed. Analysis of RT-PCR data exhibited an increase in the expression of NT-3 with time in both the grafts (6 weeks 0.428 ± 0.392, 12 weeks 1.089 ± 0.455, P < 0.05) and distal stump (6 weeks 0.411 ± 0.306, 12 weeks 0.807 ± 0.303, P < 0.05) of the SVG group. The study concludes that there is no substantial difference in the nerve regeneration ability between both the techniques. Also, the difference in the level of NT-3 between SVG and IOVG suggests a distinct regulation of NT-3 in peripheral nerve regeneration.


Subject(s)
Guided Tissue Regeneration/methods , Jugular Veins/transplantation , Nerve Growth Factors/metabolism , Nerve Regeneration/physiology , Peripheral Nerve Injuries/surgery , Sciatic Nerve/injuries , Animals , Biomarkers/metabolism , Male , Nerve Growth Factor/metabolism , Neurotrophin 3/metabolism , Peripheral Nerve Injuries/metabolism , Rats , Rats, Wistar , Sciatic Nerve/metabolism , Sciatic Nerve/surgery
4.
Surg Radiol Anat ; 32(2): 159-64, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19760356

ABSTRACT

BACKGROUND: The foramen of Vesalius (FV) is located in the greater wing of the sphenoid bone between the foramen ovale (FO) and the foramen rotundum in an intracranial view. The FO allows the passage of the mandibular branch of trigeminal nerve, which is the target of the trigeminal radiofrequency rhizotomy. OBJECTIVE: We analyzed its location, morphology, morphometry and interrelation among other foramina. MATERIALS AND METHODS: 400 macerated adult human skulls were examined. A digital microscope (Dino-Lite plus) was used to capture images from the FV. A digital caliper was used to perform the measurements of the distance between the FV and other foramina (FO, foramen spinosum and the carotid canal) in an extracranial view of the skull base. RESULTS: In the 400 analyzed skulls, the FV was identified in 135 skulls (33.75%) and absent on both sides in 265 skulls (66.25%). The FV was observed present bilaterally in 15.5% of the skulls. The incidence of unilateral foramen was 18.25% of the skulls of which 7.75% on right side and 10.5% on left side. The diameter of the FV was measured and we found an average value of 0.65 mm, on right side 0.63 mm and on the left side 0.67 mm. We verified that positive correlations were statistically significant among the three analyzed distances. CONCLUSIONS: This study intends to offer specific anatomical data with morphological patterns (macroscopic and mesoscopic) to increase the understanding of the FV features as frequency, incidence and important distances among adjacent foramina.


Subject(s)
Sphenoid Bone/anatomy & histology , Humans , Rhizotomy , Trigeminal Nerve/surgery
SELECTION OF CITATIONS
SEARCH DETAIL