Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 8982, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637586

ABSTRACT

Many molecular mechanisms that lead to the host antibody response to COVID-19 vaccines remain largely unknown. In this study, we used serum antibody detection combined with whole blood RNA-based transcriptome analysis to investigate variability in vaccine response in healthy recipients of a booster (third) dose schedule of the mRNA BNT162b2 vaccine against COVID-19. The cohort was divided into two groups: (1) low-stable individuals, with antibody concentration anti-SARS-CoV IgG S1 below 0.4 percentile at 180 days after boosting vaccination; and (2) high-stable individuals, with antibody values greater than 0.6 percentile of the range in the same period (median 9525 [185-80,000] AU/mL). Differential gene expression, expressed single nucleotide variants and insertions/deletions, differential splicing events, and allelic imbalance were explored to broaden our understanding of the immune response sustenance. Our analysis revealed a differential expression of genes with immunological functions in individuals with low antibody titers, compared to those with higher antibody titers, underscoring the fundamental importance of the innate immune response for boosting immunity. Our findings also provide new insights into the determinants of the immune response variability to the SARS-CoV-2 mRNA vaccine booster, highlighting the significance of differential splicing regulatory mechanisms, mainly concerning HLA alleles, in delineating vaccine immunogenicity.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2/genetics , BNT162 Vaccine , mRNA Vaccines , COVID-19/prevention & control , Antibodies , Immunity, Innate , Antibodies, Viral
2.
BMC Genomics ; 25(1): 215, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413941

ABSTRACT

BACKGROUND: Phylogenetic gaps of public databases of reference sequences are a major obstacle for comparative genomics and management of marine resources, particularly in the Global South, where economically important fisheries and conservation flagship species often lack closely-related references. We applied target-enrichment to obtain complete mitochondrial genomes of marine ichthyofauna from the Brazilian coast selected based on economic significance, conservation status and lack of phylogenetically-close references. These included sardines (Dorosomatidae, Alosidae), mackerels (Scombridae) croakers (Sciaenidae), groupers (Epinephelidae) and snappers (Lutjanidae). RESULTS: Custom baits were designed to enrich mitochondrial DNA across a broad phylogenetic range of fishes. Sequencing generated approximately 100k reads per sample, which were assembled in a total of 70 complete mitochondrial genomes and include fifty-two new additions to GenBank, including five species with no previous mitochondrial data. Departures from the typical gene content and order occurred in only three taxa and mostly involved tRNA gene duplications. Start-codons for all genes, except Cytochrome C Oxidase subunit I (COI), were consistently ATG, whilst a wide range of stop-codons deviated from the prevailing TAA. Phylogenetic analysis confirmed assembly accuracy and revealed signs of cryptic diversification within the Mullus genus. Lineage delimitation methods using Sardinella aurita and S. brasiliensis mitochondrial genomes support a single Operational Taxonomic Unit. CONCLUSIONS: Target enrichment was highly efficient, providing complete novel mitochondrial genomes with little sequencing effort. These sequences are deposited in public databases to enable subsequent studies in population genetics and adaptation of Latin American fish species and serve as a vital resource for conservation and management programs that rely on molecular data for species and genus-level identification.


Subject(s)
Genome, Mitochondrial , Perciformes , Animals , Phylogeny , Fisheries , Fishes/genetics , Perciformes/genetics , DNA, Mitochondrial/genetics , Codon
3.
Comput Biol Med ; 166: 107494, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37769462

ABSTRACT

Alzheimer's disease (AD) is an increasingly neurodegenerative disorder that causes progressive cognitive decline and memory impairment. Despite extensive research, the underlying causes of late-onset AD (LOAD) are still in progress. This study aimed to establish a network of competing regulatory interactions involving circular RNAs (circRNAs), microRNAs (miRNAs), RNA-binding proteins (RBPs), and messenger RNAs (mRNAs) connected to LOAD. A systematic analysis of publicly available expression data was conducted to identify integrated differentially expressed genes (DEGs) from the hippocampus of LOAD patients. Subsequently, gene co-expression analysis identified modules comprising highly expressed DEGs that act cooperatively. The competition between co-expressed DEGs and miRNAs/RBPs and the simultaneous interactions between circRNA and miRNA/RBP revealed a complex ceRNA network responsible for post-transcriptional regulation in LOAD. Hippocampal expression data for miRNAs, circRNAs, and RBPs were used to filter relevant relationships for AD. An integrated topological score was used to identify the highly connected hub gene, from which a brain core ceRNA subnetwork was generated. The Fragile X Messenger Ribonucleoprotein 1 (FMR1) coding for the RBP FMRP emerged as the prominent driver gene in this subnetwork. FMRP has been previously related to AD but not in a ceRNA network context. Also, the substantial number of neurodevelopmental genes in the ceRNA subnetwork and their related biological pathways strengthen that AD shares common pathological mechanisms with developmental conditions. Our results enhance the current knowledge about the convergent ceRNA regulatory pathways underlying AD and provide potential targets for identifying early biomarkers and developing novel therapeutic interventions.

4.
Bioinform Adv ; 3(1): vbad067, 2023.
Article in English | MEDLINE | ID: mdl-37359724

ABSTRACT

Summary: Semantic web standards have shown importance in the last 20 years in promoting data formalization and interlinking between the existing knowledge graphs. In this context, several ontologies and data integration initiatives have emerged in recent years for the biological area, such as the broadly used Gene Ontology that contains metadata to annotate gene function and subcellular location. Another important subject in the biological area is protein-protein interactions (PPIs) which have applications like protein function inference. Current PPI databases have heterogeneous exportation methods that challenge their integration and analysis. Presently, several initiatives of ontologies covering some concepts of the PPI domain are available to promote interoperability across datasets. However, the efforts to stimulate guidelines for automatic semantic data integration and analysis for PPIs in these datasets are limited. Here, we present PPIntegrator, a system that semantically describes data related to protein interactions. We also introduce an enrichment pipeline to generate, predict and validate new potential host-pathogen datasets by transitivity analysis. PPIntegrator contains a data preparation module to organize data from three reference databases and a triplification and data fusion module to describe the provenance information and results. This work provides an overview of the PPIntegrator system applied to integrate and compare host-pathogen PPI datasets from four bacterial species using our proposed transitivity analysis pipeline. We also demonstrated some critical queries to analyze this kind of data and highlight the importance and usage of the semantic data generated by our system. Availability and implementation: https://github.com/YasCoMa/ppintegrator, https://github.com/YasCoMa/ppi_validation_process and https://github.com/YasCoMa/predprin.

5.
Mol Med ; 28(1): 153, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36510129

ABSTRACT

BACKGROUND: Multisystem Inflammatory Syndrome in Children (MIS-C) is a life-threatening complication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which manifests as a hyper inflammatory process with multiorgan involvement in predominantly healthy children in the weeks following mild or asymptomatic coronavirus disease 2019 (COVID-19). However, host monogenic predisposing factors to MIS-C remain elusive. METHODS: Herein, we used whole exome sequencing (WES) on 16 MIS-C Brazilian patients to identify single nucleotide/InDels variants as predisposition factors associated with MIS-C. RESULTS: We identified ten very rare variants in eight genes (FREM1, MPO, POLG, C6, C9, ABCA4, ABCC6, and BSCL2) as the most promising candidates to be related to a higher risk of MIS-C development. These variants may propitiate a less effective immune response to infection or trigger the inflammatory response or yet a delayed hyperimmune response to SARS-CoV-2. Protein-Protein Interactions (PPIs) among the products of the mutated genes revealed an integrated network, enriched for immune and inflammatory response mechanisms with some of the direct partners representing gene products previously associated with MIS-C and Kawasaki disease (KD). In addition, the PPIs direct partners are also enriched for COVID-19-related gene sets. HLA alleles prediction from WES data allowed the identification of at least one risk allele in 100% of the MIS-C patients. CONCLUSIONS: This study is the first to explore host MIS-C-associated variants in a Latin American admixed population. Besides expanding the spectrum of MIS-C-associated variants, our findings highlight the relevance of using WES for characterising the genetic interindividual variability associated with COVID-19 complications and ratify the presence of overlapping/convergent mechanisms among MIS-C, KD and COVID-19, crucial for future therapeutic management.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , COVID-19/complications , COVID-19/genetics , Genetic Predisposition to Disease , Systemic Inflammatory Response Syndrome/genetics , ATP-Binding Cassette Transporters
6.
Mem Inst Oswaldo Cruz ; 117: e220102, 2022.
Article in English | MEDLINE | ID: mdl-36169569

ABSTRACT

BACKGROUND: Gram-negative and Gram-positive bacteria produce beta-lactamase as factors to overcome beta-lactam antibiotics, causing their hydrolysis and impaired antimicrobial action. Class A beta-lactamase contains the chromosomal sulfhydryl reagent variable (SHV, point mutation variants of SHV-1), LEN (Klebsiella pneumoniae strain LEN-1), and other K. pneumoniae beta-lactamase (OKP) found mostly in Klebsiella's phylogroups. The SHV known as extended-spectrum ß-lactamase can inactivate most beta-lactam antibiotics. Class A also includes the worrisome plasmid-encoded Klebsiella pneumoniae carbapenemase (KPC-2), a carbapenemase that can inactivate most beta-lactam antibiotics, carbapenems, and some beta-lactamase inhibitors. OBJECTIVES: So far, there is no 3D crystal structure for OKP-B, so our goal was to perform structural characterisation and molecular docking studies of this new enzyme. METHODS: We applied a homology modelling method to build the OKP-B-6 structure, which was compared with SHV-1 and KPC-2 according to their electrostatic potentials at the active site. Using the DockThor-VS, we performed molecular docking of the SHV-1 inhibitors commercially available as sulbactam, tazobactam, and avibactam against the constructed model of OKP-B-6. FINDINGS: From the point of view of enzyme inhibition, our results indicate that OKP-B-6 should be an extended-spectrum beta-lactamase (ESBL) susceptible to the same drugs as SHV-1. MAIN CONCLUSIONS: This conclusion advantageously impacts the clinical control of the bacterial pathogens encoding OKP-B in their genome by using any effective, broad-spectrum, and multitarget inhibitor against SHV-containing bacteria.


Subject(s)
Sulbactam , beta-Lactamase Inhibitors , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Klebsiella , Klebsiella pneumoniae , Microbial Sensitivity Tests , Molecular Docking Simulation , Sulbactam/pharmacology , Sulfhydryl Reagents/pharmacology , Tazobactam/pharmacology , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/genetics
7.
Microbiol Spectr ; 10(5): e0056522, 2022 10 26.
Article in English | MEDLINE | ID: mdl-35993730

ABSTRACT

The epidemiology of antimicrobial resistance (AMR) is complex, with multiple interfaces (human-animal-environment). In this context, One Health surveillance is essential for understanding the distribution of microorganisms and antimicrobial resistance genes (ARGs). This report describes a multicentric study undertaken to evaluate the bacterial communities and resistomes of food-producing animals (cattle, poultry, and swine) and healthy humans sampled simultaneously from five Brazilian regions. Metagenomic analysis showed that a total of 21,029 unique species were identified in 107 rectal swabs collected from distinct hosts, the highest numbers of which belonged to the domain Bacteria, mainly Ruminiclostridium spp. and Bacteroides spp., and the order Enterobacterales. We detected 405 ARGs for 12 distinct antimicrobial classes. Genes encoding antibiotic-modifying enzymes were the most frequent, followed by genes related to target alteration and efflux systems. Interestingly, carbapenemase-encoding genes such as blaAIM-1, blaCAM-1, blaGIM-2, and blaHMB-1 were identified in distinct hosts. Our results revealed that, in general, the bacterial communities from humans were present in isolated clusters, except for the Northeastern region, where an overlap of the bacterial species from humans and food-producing animals was observed. Additionally, a large resistome was observed among all analyzed hosts, with emphasis on the presence of carbapenemase-encoding genes not previously reported in Latin America. IMPORTANCE Humans and food production animals have been reported to be important reservoirs of antimicrobial resistance (AMR) genes (ARGs). The frequency of these multidrug-resistant (MDR) bacteria tends to be higher in low- and middle-income countries (LMICs), due mainly to a lack of public health policies. Although studies on AMR in humans or animals have been carried out in Brazil, this is the first multicenter study that simultaneously collected rectal swabs from humans and food-producing animals for metagenomics. Our results indicate high microbial diversity among all analyzed hosts, and several ARGs for different antimicrobial classes were also found. As far as we know, we have detected for the first time ARGs encoding carbapenemases, such as blaAIM-1, blaCAM-1, blaGIM-2, and blaHMB-1, in Latin America. Thus, our results support the importance of metagenomics as a tool to track the colonization of food-producing animals and humans by antimicrobial-resistant bacteria. In addition, a network surveillance system called GUARANI, created for this study, is ready to be expanded and to collect additional data.


Subject(s)
Anti-Infective Agents , Drug Resistance, Bacterial , Humans , Swine , Cattle , Animals , Drug Resistance, Bacterial/genetics , Brazil , Metagenomics/methods , Bacteria , Anti-Bacterial Agents/pharmacology , Poultry , Genes, Bacterial
8.
Sci Data ; 9(1): 366, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35752638

ABSTRACT

The One Health concept is a global strategy to study the relationship between human and animal health and the transfer of pathogenic and non-pathogenic species between these systems. However, to the best of our knowledge, no data based on One Health genome-centric metagenomics are available in public repositories. Here, we present a dataset based on a pilot-study of 2,915 metagenome-assembled genomes (MAGs) of 107 samples from the human (N = 34), cattle (N = 28), swine (N = 15) and poultry (N = 30) gut microbiomes. Samples were collected from the five Brazilian geographical regions. Of the draft genomes, 1,273 were high-quality drafts (≥90% of completeness and ≤5% of contamination), and 1,642 were medium-quality drafts (≥50% of completeness and ≤10% of contamination). Taxonomic predictions were based on the alignment and concatenation of single-marker genes, and the most representative phyla were Bacteroidota, Firmicutes, and Proteobacteria. Many of these species represent potential pathogens that have already been described or potential new families, genera, and species with potential biotechnological applications. Analyses of this dataset will highlight discoveries about the ecology and functional role of pathogens and uncultivated Archaea and Bacteria from food-producing animals and humans. Furthermore, it also represents an opportunity to describe new species from underrepresented taxonomic groups.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Animals , Archaea/genetics , Bacteria/genetics , Cattle , Humans , Metagenomics , Swine
9.
BMC Pediatr ; 22(1): 181, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35382780

ABSTRACT

BACKGROUND: X-linked agammaglobulinemia (XLA) is an Inborn Errors of Immunity (IEI) characterized by pan-hypogammaglobulinemia and low numbers of B lymphocytes due to mutations in BTK gene. Usually, XLA patients are not susceptible to respiratory tract infections by viruses and do not present interstitial lung disease (ILD) such as bronchiolitis obliterans (BO) as a consequence of acute or chronic bacterial infections of the respiratory tract. Although many pathogenic variants have already been described in XLA, the heterogeneous clinical presentations in affected patients suggest a more complex genetic landscape underlying this disorder. CASE PRESENTATION: We report two pediatric cases from male siblings with X-Linked Agammaglobulinemia and bronchiolitis obliterans, a phenotype not often observed in XLA phenotype. The whole-exome sequencing (WES) analysis showed a rare hemizygous missense variant NM_000061.2(BTK):c.1751G>A(p.Gly584Glu) in BTK gene of both patients. We also identified a gain-of-function mutation in TGFß1 (rs1800471) previously associated with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. TGFß1 plays a key role in the regulation of immune processes and inflammatory response associated with pulmonary impairment. CONCLUSIONS: Our report illustrates a possible role for WES in patients with known inborn errors of immunity, but uncommon clinical presentations, providing a personalized understanding of genetic basis, with possible implications in the identification of potential treatments, and prognosis for patients and their families.


Subject(s)
Agammaglobulinemia , Bronchiolitis Obliterans , Genetic Diseases, X-Linked , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinemia/complications , Agammaglobulinemia/diagnosis , Agammaglobulinemia/genetics , Child , DNA Mutational Analysis , Genetic Diseases, X-Linked/diagnosis , Genetic Diseases, X-Linked/genetics , Humans , Male , Mutation , Siblings
10.
Braz J Microbiol ; 53(3): 1249-1262, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35446010

ABSTRACT

Salmonella enterica causes Salmonellosis, an important infection in humans and other animals. The number of multidrug-resistant (MDR) phenotypes associated with Salmonella spp. isolates is increasing worldwide, causing public health concern. Here, we aim to characterize the antimicrobial-resistant phenotype of 789 non-typhoidal S. enterica strains isolated from human infections in the state of São Paulo, Brazil, along 20 years (2000-2019). Among the non-susceptible isolates, 31.55, 14.06, and 13.18% were resistant to aminoglycosides, tetracycline, and ß-lactams, respectively. Moreover, 68 and 11 isolates were considered MDR and Extended Spectrum ß-Lactamase (ESBL) producers, respectively, whereas one isolate was colistin-resistant. We selected four strains to obtain a draft of the Genome Sequence; one S. Infantis (ST32), one S. Enteritidis (ST11), one S. I 4,[5],12:i:- (ST19), and one S. Typhimurium (ST313). Among them, three presented at least one of the following antimicrobial resistance genes (AMR) linked to mobile DNA: blaTEM-1B, dfrA1, tetA, sul1, floR, aac(6')-laa, and qnrE1. This is the first description of the plasmid-mediated quinolone resistance (PMQR) gene qnrE1 in a clinical isolate of S. I 4,[5],12:i:-. The S. Typhimurium is a colistin-resistant isolate, but did not harbor mcr genes, but it presented mutations within the mgrB, pmrB, and pmrC regions that might be linked to the colistin-resistant phenotype. The virulence pattern of the four isolates resembled the virulence pattern of the highly pathogenic S. Typhimurium UK-1 reference strain in assays involving the in vivo Galleria mellonella model. In conclusion, most isolates studied here are susceptible, but a small percentage present an MDR or ESBL-producer and pathogenic phenotype. Sequence analyses revealed plasmid-encoded AMR genes, such as ß-lactam and fluoroquinolone resistance genes, indicating that these characteristics can be potentially disseminated among other bacterial strains.


Subject(s)
Drug Resistance, Bacterial , Salmonella Infections , Salmonella enterica , Anti-Bacterial Agents/pharmacology , Brazil , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Genetic Background , Humans , Microbial Sensitivity Tests , Salmonella Infections/microbiology , Salmonella enterica/genetics
11.
Mem Inst Oswaldo Cruz ; 116: e210176, 2022.
Article in English | MEDLINE | ID: mdl-35019069

ABSTRACT

BACKGROUND: During routine Coronavirus disease 2019 (COVID-19) diagnosis, an unusually high viral load was detected by reverse transcription real-time polymerase chain reaction (RT-qPCR) in a nasopharyngeal swab sample collected from a patient with respiratory and neurological symptoms who rapidly succumbed to the disease. Therefore we sought to characterise the infection. OBJECTIVES: We aimed to determine and characterise the etiological agent responsible for the poor outcome. METHODS: Classical virological methods, such as plaque assay and plaque reduction neutralisation test combined with amplicon-based sequencing, as well as a viral metagenomic approach, were performed to characterise the etiological agents of the infection. FINDINGS: Plaque assay revealed two distinct plaque phenotypes, suggesting either the presence of two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains or a productive coinfection of two different species of virus. Amplicon-based sequencing did not support the presence of any SARS-CoV-2 genetic variants that would explain the high viral load and suggested the presence of a single SARS-CoV-2 strain. Nonetheless, the viral metagenomic analysis revealed that Coronaviridae and Herpesviridae were the predominant virus families within the sample. This finding was confirmed by a plaque reduction neutralisation test and PCR. MAIN CONCLUSIONS: We characterised a productive coinfection of SARS-CoV-2 and Herpes simplex virus 1 (HSV-1) in a patient with severe symptoms that succumbed to the disease. Although we cannot establish the causal relationship between the coinfection and the severity of the clinical case, this work serves as a warning for future studies focused on the interplay between SARS-CoV-2 and HSV-1 coinfection and COVID-19 severity.


Subject(s)
COVID-19 , Coinfection , Herpesvirus 1, Human , Herpesvirus 1, Human/genetics , Humans , Real-Time Polymerase Chain Reaction , SARS-CoV-2
12.
Genomics Proteomics Bioinformatics ; 20(1): 60-69, 2022 02.
Article in English | MEDLINE | ID: mdl-35033679

ABSTRACT

A new variant of concern for SARS-CoV-2, Omicron (B.1.1.529), was designated by the World Health Organization on November 26, 2021. This study analyzed the viral genome sequencing data of 108 samples collected from patients infected with Omicron. First, we found that the enrichment efficiency of viral nucleic acids was reduced due to mutations in the region where the primers anneal to. Second, the Omicron variant possesses an excessive number of mutations compared to other variants circulating at the same time (median: 62 vs. 45), especially in the Spike gene. Mutations in the Spike gene confer alterations in 32 amino acid residues, more than those observed in other SARS-CoV-2 variants. Moreover, a large number of nonsynonymous mutations occur in the codons for the amino acid residues located on the surface of the Spike protein, which could potentially affect the replication, infectivity, and antigenicity of SARS-CoV-2. Third, there are 53 mutations between the Omicron variant and its closest sequences available in public databases. Many of these mutations were rarely observed in public databases and had a low mutation rate. In addition, the linkage disequilibrium between these mutations was low, with a limited number of mutations concurrently observed in the same genome, suggesting that the Omicron variant would be in a different evolutionary branch from the currently prevalent variants. To improve our ability to detect and track the source of new variants rapidly, it is imperative to further strengthen genomic surveillance and data sharing globally in a timely manner.


Subject(s)
COVID-19 , Nucleic Acids , Amino Acids , Genomics , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
13.
Front Immunol ; 13: 1101526, 2022.
Article in English | MEDLINE | ID: mdl-36818472

ABSTRACT

Introduction: Cell entry of SARS-CoV-2 causes genome-wide disruption of the transcriptional profiles of genes and biological pathways involved in the pathogenesis of COVID-19. Expression allelic imbalance is characterized by a deviation from the Mendelian expected 1:1 expression ratio and is an important source of allele-specific heterogeneity. Expression allelic imbalance can be measured by allele-specific expression analysis (ASE) across heterozygous informative expressed single nucleotide variants (eSNVs). ASE reflects many regulatory biological phenomena that can be assessed by combining genome and transcriptome information. ASE contributes to the interindividual variability associated with the disease. We aim to estimate the transcriptome-wide impact of SARS-CoV-2 infection by analyzing eSNVs. Methods: We compared ASE profiles in the human lung cell lines Calu-3, A459, and H522 before and after infection with SARS-CoV-2 using RNA-Seq experiments. Results: We identified 34 differential ASE (DASE) sites in 13 genes (HLA-A, HLA-B, HLA-C, BRD2, EHD2, GFM2, GSPT1, HAVCR1, MAT2A, NQO2, SUPT6H, TNFRSF11A, UMPS), all of which are enriched in protein binding functions and play a role in COVID-19. Most DASE sites were assigned to the MHC class I locus and were predominantly upregulated upon infection. DASE sites in the MHC class I locus also occur in iPSC-derived airway epithelium basal cells infected with SARS-CoV-2. Using an RNA-Seq haplotype reconstruction approach, we found DASE sites and adjacent eSNVs in phase (i.e., predicted on the same DNA strand), demonstrating differential haplotype expression upon infection. We found a bias towards the expression of the HLA alleles with a higher binding affinity to SARS-CoV-2 epitopes. Discussion: Independent of gene expression compensation, SARS-CoV-2 infection of human lung cell lines induces transcriptional allelic switching at the MHC loci. This suggests a response mechanism to SARS-CoV-2 infection that swaps HLA alleles with poor epitope binding affinity, an expectation supported by publicly available proteome data.


Subject(s)
COVID-19 , Humans , Alleles , Epitopes , Haplotypes , Lung , Methionine Adenosyltransferase , SARS-CoV-2 , Histocompatibility Antigens Class I/genetics
14.
Mem. Inst. Oswaldo Cruz ; 117: e220102, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1405992

ABSTRACT

BACKGROUND Gram-negative and Gram-positive bacteria produce beta-lactamase as factors to overcome beta-lactam antibiotics, causing their hydrolysis and impaired antimicrobial action. Class A beta-lactamase contains the chromosomal sulfhydryl reagent variable (SHV, point mutation variants of SHV-1), LEN (Klebsiella pneumoniae strain LEN-1), and other K. pneumoniae beta-lactamase (OKP) found mostly in Klebsiella's phylogroups. The SHV known as extended-spectrum β-lactamase can inactivate most beta-lactam antibiotics. Class A also includes the worrisome plasmid-encoded Klebsiella pneumoniae carbapenemase (KPC-2), a carbapenemase that can inactivate most beta-lactam antibiotics, carbapenems, and some beta-lactamase inhibitors. OBJECTIVES So far, there is no 3D crystal structure for OKP-B, so our goal was to perform structural characterisation and molecular docking studies of this new enzyme. METHODS We applied a homology modelling method to build the OKP-B-6 structure, which was compared with SHV-1 and KPC-2 according to their electrostatic potentials at the active site. Using the DockThor-VS, we performed molecular docking of the SHV-1 inhibitors commercially available as sulbactam, tazobactam, and avibactam against the constructed model of OKP-B-6. FINDINGS From the point of view of enzyme inhibition, our results indicate that OKP-B-6 should be an extended-spectrum beta-lactamase (ESBL) susceptible to the same drugs as SHV-1. MAIN CONCLUSIONS This conclusion advantageously impacts the clinical control of the bacterial pathogens encoding OKP-B in their genome by using any effective, broad-spectrum, and multitarget inhibitor against SHV-containing bacteria.

15.
BMC Microbiol ; 21(1): 294, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711170

ABSTRACT

BACKGROUND: The Rhizobiales (Proteobacteria) order is an abundant and diverse group of microorganisms, being extensively studied for its lifestyle based on the association with plants, animals, and humans. New studies have demonstrated that the last common ancestor (LCA) of Rhizobiales had a free-living lifestyle, but the phylogenetic and metabolism characterization of basal lineages remains unclear. Here, we used a high-resolution phylogenomic approach to test the monophyly of the Aestuariivirgaceae family, a new taxonomic group of Rhizobiales. Furthermore, a deep metabolic investigation provided an overview of the main functional traits that can be associated with its lifestyle. We hypothesized that the presence of pathways (e.g., Glycolysis/Gluconeogenesis) and the absence of pathogenic genes would be associated with a free-living lifestyle in Aestuariivirgaceae. RESULTS: Using high-resolution phylogenomics approaches, our results revealed a clear separation of Aestuariivirgaceae into a distinct clade of other Rhizobiales family, suggesting a basal split early group and corroborate the monophyly of this group. A deep functional annotation indicated a metabolic versatility, which includes putative genes related to sugar degradation and aerobic respiration. Furthermore, many of these traits could reflect a basal metabolism and adaptations of Rhizobiales, as such the presence of Glycolysis/Gluconeogenesis pathway and the absence of pathogenicity genes, suggesting a free-living lifestyle in the Aestuariivirgaceae members. CONCLUSIONS: Aestuariivirgaceae (Rhizobiales) family is a monophyletic taxon of the Rhizobiales with a free-living lifestyle and a versatile metabolism that allows these microorganisms to survive in the most diverse microbiomes, demonstrating their adaptability to living in systems with different conditions, such as extremely cold environments to tropical rivers.


Subject(s)
Metagenome/genetics , Proteobacteria/genetics , Evolution, Molecular , Geologic Sediments/microbiology , Metabolic Networks and Pathways , Metagenomics , Phylogeny , Proteobacteria/classification , Proteobacteria/metabolism , Seawater/microbiology
16.
Front Genet ; 12: 639364, 2021.
Article in English | MEDLINE | ID: mdl-33815474

ABSTRACT

Chikungunya virus (CHIKV) is a re-emergent arbovirus that causes a disease characterized primarily by fever, rash and severe persistent polyarthralgia, although <1% of cases develop severe neurological manifestations such as inflammatory demyelinating diseases (IDD) of the central nervous system (CNS) like acute disseminated encephalomyelitis (ADEM) and extensive transverse myelitis. Genetic factors associated with host response and disease severity are still poorly understood. In this study, we performed whole-exome sequencing (WES) to identify HLA alleles, genes and cellular pathways associated with CNS IDD clinical phenotype outcomes following CHIKV infection. The cohort includes 345 patients of which 160 were confirmed for CHIKV. Six cases presented neurological manifestation mimetizing CNS IDD. WES data analysis was performed for 12 patients, including the CNS IDD cases and 6 CHIKV patients without any neurological manifestation. We identified 29 candidate genes harboring rare, pathogenic, or probably pathogenic variants in all exomes analyzed. HLA alleles were also determined and patients who developed CNS IDD shared a common signature with diseases such as Multiple sclerosis (MS) and Neuromyelitis Optica Spectrum Disorders (NMOSD). When these genes were included in Gene Ontology analyses, pathways associated with CNS IDD syndromes were retrieved, suggesting that CHIKV-induced CNS outcomesmay share a genetic background with other neurological disorders. To our knowledge, this study was the first genome-wide investigation of genetic risk factors for CNS phenotypes in CHIKV infection. Our data suggest that HLA-DRB1 alleles associated with demyelinating diseases may also confer risk of CNS IDD outcomes in patients with CHIKV infection.

17.
Front Cell Infect Microbiol ; 11: 641261, 2021.
Article in English | MEDLINE | ID: mdl-33791243

ABSTRACT

Arboviruses pose a major threat throughout the world and represent a great burden in tropical countries of South America. Although generally associated with moderate febrile illness, in more severe cases they can lead to neurological outcomes, such as encephalitis, Guillain-Barré syndrome, and Congenital Syndromes. In this context astrocytes play a central role in production of inflammatory cytokines, regulation of extracellular matrix, and control of glutamate driven neurotoxicity in the central nervous system. Here, we presented a comprehensive genome-wide transcriptome analysis of human primary astrocytes infected with Chikungunya, Mayaro, Oropouche, or Zika viruses. Analyses of differentially expressed genes (DEGs), pathway enrichment, and interactomes have shown that Alphaviruses up-regulated genes related to elastic fiber formation and N-glycosylation of glycoproteins, with down-regulation of cell cycle and DNA stability and chromosome maintenance genes. In contrast, Oropouche virus up-regulated cell cycle and DNA maintenance and condensation pathways while down-regulated extracellular matrix, collagen metabolism, glutamate and ion transporters pathways. Zika virus infection only up-regulated eukaryotic translation machinery while down-regulated interferon pathways. Reactome and integration analysis revealed a common signature in down-regulation of innate immune response, antiviral response, and inflammatory cytokines associated to interferon pathway for all arboviruses tested. Validation of interferon stimulated genes by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) corroborated our transcriptome findings. Altogether, our results showed a co-evolution in the mechanisms involved in the escape of arboviruses to antiviral immune response mediated by the interferon (IFN) pathway.


Subject(s)
Chikungunya Fever , Zika Virus Infection , Zika Virus , Astrocytes , Humans , Immunity, Innate
18.
Genomics ; 113(2): 805-814, 2021 03.
Article in English | MEDLINE | ID: mdl-33529779

ABSTRACT

Cryptococcus gattii is one of the causes of cryptococcosis, a life-threatening disease generally characterized by pneumonia and/or meningitis. Zinc is an essential element for life, being required for the activity of many proteins with catalytic and structural roles. Here, we characterize ZRG1 (zinc-related gene 1), which codes a product involved in zinc metabolism. Transcriptional profiling revealed that zinc availability regulated the expression of ZRG1, and its null mutants demonstrated impaired growth in zinc- and nitrogen-limiting conditions. Moreover, zrg1 strains displayed alterations in the expression of the zinc homeostasis-related genes ZAP1 and ZIP1. Notably, cryptococcal cells lacking Zrg1 displayed upregulation of autophagy-like phenotypes. Despite no differences were detected in the classical virulence-associated traits; cryptococcal cells lacking ZRG1 displayed decreased capacity for survival inside macrophages and attenuated virulence in an invertebrate model. Together, these results indicate that ZRG1 plays an important role in proper zinc metabolism, and is necessary for cryptococcal fitness and virulence.


Subject(s)
Cation Transport Proteins/genetics , Cryptococcus gattii/genetics , Fungal Proteins/genetics , Animals , Autophagy , Cation Transport Proteins/metabolism , Cryptococcus gattii/metabolism , Cryptococcus gattii/pathogenicity , Fungal Proteins/metabolism , Mice , Mutation , RAW 264.7 Cells , Zinc/metabolism
19.
Front Bioinform ; 1: 731345, 2021.
Article in English | MEDLINE | ID: mdl-36303787

ABSTRACT

Predicting the physical or functional associations through protein-protein interactions (PPIs) represents an integral approach for inferring novel protein functions and discovering new drug targets during repositioning analysis. Recent advances in high-throughput data generation and multi-omics techniques have enabled large-scale PPI predictions, thus promoting several computational methods based on different levels of biological evidence. However, integrating multiple results and strategies to optimize, extract interaction features automatically and scale up the entire PPI prediction process is still challenging. Most procedures do not offer an in-silico validation process to evaluate the predicted PPIs. In this context, this paper presents the PredPrIn scientific workflow that enables PPI prediction based on multiple lines of evidence, including the structure, sequence, and functional annotation categories, by combining boosting and stacking machine learning techniques. We also present a pipeline (PPIVPro) for the validation process based on cellular co-localization filtering and a focused search of PPI evidence on scientific publications. Thus, our combined approach provides means to extensive scale training or prediction of new PPIs and a strategy to evaluate the prediction quality. PredPrIn and PPIVPro are publicly available at https://github.com/YasCoMa/predprin and https://github.com/YasCoMa/ppi_validation_process.

20.
World J Biol Psychiatry ; 22(6): 435-445, 2021 07.
Article in English | MEDLINE | ID: mdl-32914658

ABSTRACT

OBJECTIVES: Intellectual Disability (ID) and Global Development Delay (GDD) are frequent reasons for referral to genetic services and although they present overlapping phenotypes concerning cognitive, motor, language, or social skills, they are not exactly synonymous. Aiming to better understand independent or shared mechanisms related to these conditions and to identify new candidate genes, we performed a highly stringent protein-protein interaction network based on genes previously related to ID/GDD in the Human Phenotype Ontology portal. METHODS: ID/GDD genes were searched for reliable interactions through STRING and clustering analysis was applied to detect biological complexes through the MCL algorithm. Six coding hub genes (TP53, CDC42, RAC1, GNB1, APP, and EP300) were recognised by the Cytoscape NetworkAnalyzer plugin, interacting with 1625 proteins not yet associated with ID or GDD. Genes encoding these proteins were explored by gene ontology, associated diseases, evolutionary conservation, and brain expression. RESULTS: One hundred and seventy-two new putative genes playing a role in enriched processes/pathways previously related to ID and GDD were revealed, some of which were already postulated to be linked to ID/GDD in additional databases. CONCLUSIONS: Our findings expanded the aetiological genetic landscape of ID/GDD and showed evidence that both conditions are closely related at the molecular and functional levels.


Subject(s)
Intellectual Disability , Brain , Child , Developmental Disabilities , Humans , Intellectual Disability/genetics , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...