Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(22): e2321600121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771881

ABSTRACT

Antigen presentation via major histocompatibility complex class I (MHC-I) molecules is essential for surveillance by the adaptive immune system. Central to this process is the peptide-loading complex (PLC), which translocates peptides from the cytosol to the endoplasmic reticulum and catalyzes peptide loading and proofreading of peptide-MHC-I (pMHC-I) complexes. Despite its importance, the impact of individual PLC components on the presented pMHC-I complexes is still insufficiently understood. Here, we used stoichiometrically defined antibody-nanobody complexes and engineered soluble T cell receptors (sTCRs) to quantify different MHC-I allomorphs and defined pMHC-I complexes, respectively. Thereby, we uncovered distinct effects of individual PLC components on the pMHC-I surface pool. Knockouts of components of the PLC editing modules, namely tapasin, ERp57, or calreticulin, changed the MHC-I surface composition to a reduced proportion of HLA-A*02:01 presentation compensated by a higher ratio of HLA-B*40:01 molecules. Intriguingly, these knockouts not only increased the presentation of suboptimally loaded HLA-A*02:01 complexes but also elevated the presentation of high-affinity peptides overexpressed in the cytosol. Our findings suggest that the components of the PLC editing module serve a dual role, acting not only as peptide proofreaders but also as limiters for abundant peptides. This dual function ensures the presentation of a broad spectrum of antigenic peptides.


Subject(s)
Antigen Presentation , Histocompatibility Antigens Class I , Peptides , Antigen Presentation/immunology , Humans , Peptides/metabolism , Peptides/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Calreticulin/metabolism , Calreticulin/genetics , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Endoplasmic Reticulum/metabolism
2.
J Biol Chem ; 299(8): 104981, 2023 08.
Article in English | MEDLINE | ID: mdl-37390984

ABSTRACT

CD8+ T cell-mediated recognition of peptide-major histocompatibility complex class I (pMHCI) molecules involves cooperative binding of the T cell receptor (TCR), which confers antigen specificity, and the CD8 coreceptor, which stabilizes the TCR/pMHCI complex. Earlier work has shown that the sensitivity of antigen recognition can be regulated in vitro by altering the strength of the pMHCI/CD8 interaction. Here, we characterized two CD8 variants with moderately enhanced affinities for pMHCI, aiming to boost antigen sensitivity without inducing non-specific activation. Expression of these CD8 variants in model systems preferentially enhanced pMHCI antigen recognition in the context of low-affinity TCRs. A similar effect was observed using primary CD4+ T cells transduced with cancer-targeting TCRs. The introduction of high-affinity CD8 variants also enhanced the functional sensitivity of primary CD8+ T cells expressing cancer-targeting TCRs, but comparable results were obtained using exogenous wild-type CD8. Specificity was retained in every case, with no evidence of reactivity in the absence of cognate antigen. Collectively, these findings highlight a generically applicable mechanism to enhance the sensitivity of low-affinity pMHCI antigen recognition, which could augment the therapeutic efficacy of clinically relevant TCRs.


Subject(s)
CD8 Antigens , CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class I , Lymphocyte Activation , Histocompatibility Antigens Class I/metabolism , Peptides/metabolism , Receptors, Antigen, T-Cell/metabolism , Humans
3.
J Clin Invest ; 130(5): 2673-2688, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32310221

ABSTRACT

Tumor-associated peptide-human leukocyte antigen complexes (pHLAs) represent the largest pool of cell surface-expressed cancer-specific epitopes, making them attractive targets for cancer therapies. Soluble bispecific molecules that incorporate an anti-CD3 effector function are being developed to redirect T cells against these targets using 2 different approaches. The first achieves pHLA recognition via affinity-enhanced versions of natural TCRs (e.g., immune-mobilizing monoclonal T cell receptors against cancer [ImmTAC] molecules), whereas the second harnesses an antibody-based format (TCR-mimic antibodies). For both classes of reagent, target specificity is vital, considering the vast universe of potential pHLA molecules that can be presented on healthy cells. Here, we made use of structural, biochemical, and computational approaches to investigate the molecular rules underpinning the reactivity patterns of pHLA-targeting bispecifics. We demonstrate that affinity-enhanced TCRs engage pHLA using a comparatively broad and balanced energetic footprint, with interactions distributed over several HLA and peptide side chains. As ImmTAC molecules, these TCRs also retained a greater degree of pHLA selectivity, with less off-target activity in cellular assays. Conversely, TCR-mimic antibodies tended to exhibit binding modes focused more toward hot spots on the HLA surface and exhibited a greater degree of crossreactivity. Our findings extend our understanding of the basic principles that underpin pHLA selectivity and exemplify a number of molecular approaches that can be used to probe the specificity of pHLA-targeting molecules, aiding the development of future reagents.


Subject(s)
HLA Antigens/immunology , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , Amino Acid Sequence , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/genetics , Antibodies, Bispecific/immunology , Antibodies, Neoplasm/chemistry , Antibodies, Neoplasm/genetics , Antibodies, Neoplasm/immunology , Antibody Specificity , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cell Line , Cell Line, Tumor , Crystallography, X-Ray , HLA Antigens/chemistry , HLA Antigens/genetics , Humans , Indicators and Reagents , Models, Molecular , Molecular Dynamics Simulation , Molecular Mimicry/genetics , Molecular Mimicry/immunology , Peptides/chemistry , Peptides/genetics , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology
4.
PLoS Biol ; 17(12): e3000549, 2019 12.
Article in English | MEDLINE | ID: mdl-31815943

ABSTRACT

Dose-response experiments are a mainstay of receptor biology studies and can reveal valuable insights into receptor function. Such studies of receptors that bind cell surface ligands are currently limited by the difficulty in manipulating the surface density of ligands at a cell-cell interface. Here, we describe a generic cell surface ligand system that allows precise manipulation of cell surface ligand densities over several orders of magnitude. These densities are robustly quantifiable, a major advance over previous studies. We validate the system for a range of immunoreceptors, including the T-cell receptor (TCR), and show that this generic ligand stimulates via the TCR at a similar surface density as its native ligand. We also extend our work to the activation of chimeric antigen receptors. This novel system allows the effect of varying the surface density, valency, dimensions, and affinity of the ligand to be investigated. It can be readily broadened to other receptor-cell surface ligand interactions and will facilitate investigation into the activation of, and signal integration between, cell surface receptors.


Subject(s)
Antigens, Surface/physiology , Biological Assay/methods , Cell Communication/immunology , Animals , CHO Cells , Cricetulus , HEK293 Cells , Humans , Jurkat Cells , Ligands , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , THP-1 Cells
5.
Biophys J ; 110(8): 1896-1906, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27119648

ABSTRACT

Multisite phosphorylation is ubiquitous in cellular signaling and is thought to provide signaling proteins with additional regulatory mechanisms. Indeed, mathematical models have revealed a large number of mechanisms by which multisite phosphorylation can produce switchlike responses. The T cell antigen receptor (TCR) is a multisubunit receptor on the surface of T cells that is a prototypical multisite substrate as it contains 20 sites that are distributed on 10 conserved immunoreceptor tyrosine-based activation motifs (ITAMs). The TCR ζ-chain is a homodimer subunit that contains six ITAMs (12 sites) and exhibits a number of properties that are predicted to be sufficient for a switchlike response. We have used cellular reconstitution to systematically study multisite phosphorylation of the TCR ζ-chain. We find that multisite phosphorylation proceeds by a nonsequential random mechanism, and find no evidence that multiple ITAMs modulate a switchlike response but do find that they alter receptor potency and maximum phosphorylation. Modulation of receptor potency can be explained by a reduction in molecular entropy of the disordered ζ-chain upon phosphorylation. We further find that the tyrosine kinase ZAP-70 increases receptor potency but does not modulate the switchlike response. In contrast to other multisite proteins, where phosphorylations act in strong concert to modulate protein function, we suggest that the multiple ITAMs on the TCR function mainly to amplify subsequent signaling.


Subject(s)
Receptors, Antigen, T-Cell/metabolism , Animals , HEK293 Cells , Humans , Kinetics , Mice , Phosphorylation , Receptors, Antigen, T-Cell/chemistry
6.
PLoS One ; 8(10): e77423, 2013.
Article in English | MEDLINE | ID: mdl-24204825

ABSTRACT

Signaling through the T cell receptor (TCR) initiates adaptive immunity and its perturbation may results in autoimmunity. The plasma membrane scaffolding protein LAT acts as a central organizer of the TCR signaling machinery to activate many functional pathways. LAT-deficient mice develop an autoimmune syndrome but the mechanism of this pathology is unknown. In this work we have compared global dynamics of TCR signaling by MS-based quantitative phosphoproteomics in LAT-sufficient and LAT-defective Jurkat T cells. Surprisingly, we found that many TCR-induced phosphorylation events persist in the absence of LAT, despite ERK and PLCγ1 phosphorylation being repressed. Most importantly, the absence of LAT resulted in augmented and persistent tyrosine phosphorylation of CD3ζ and ZAP70. This indicates that LAT signaling hub is also implicated in negative feedback signals to modulate upstream phosphorylation events. Phosphorylation kinetics data resulting from this investigation is documented in a database (phosphoTCR) accessible online. The MS data have been deposited to the ProteomeXchange with identifier PXD000341.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , CD3 Complex/genetics , Membrane Proteins/genetics , Phosphoproteins/genetics , Signal Transduction/genetics , ZAP-70 Protein-Tyrosine Kinase/genetics , Adaptor Proteins, Signal Transducing/deficiency , CD3 Complex/metabolism , Chromatography, Liquid , Databases, Protein , Feedback, Physiological , Gene Expression Regulation , Humans , Jurkat Cells , Mass Spectrometry , Membrane Proteins/deficiency , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism , Phosphoproteins/metabolism , Phosphorylation , Protein Interaction Mapping , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Tyrosine/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism
7.
J Immunol ; 190(7): 3749-56, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23460737

ABSTRACT

Thymocyte-expressed molecule involved in selection (THEMIS) is a recently identified regulator of thymocyte positive selection. THEMIS's mechanism of action is unknown, and whether it has a role in TCR-proximal signaling is controversial. In this article, we show that THEMIS and the adapter molecule growth factor receptor-bound protein 2 (GRB2) associate constitutively through binding of a conserved PxRPxK motif within the proline-rich region 1 of THEMIS to the C-terminal SH3-domain of GRB2. This association is indispensable for THEMIS recruitment to the immunological synapse via the transmembrane adapter linker for activation of T cells (LAT) and for THEMIS phosphorylation by Lck and ZAP-70. Two major sites of tyrosine phosphorylation were mapped to a YY-motif close to proline-rich region 1. The YY-motif was crucial for GRB2 binding, suggesting that this region of THEMIS might control local phosphorylation-dependent conformational changes important for THEMIS function. Finally, THEMIS binding to GRB2 was required for thymocyte development. Our data firmly assign THEMIS to the TCR-proximal signaling cascade as a participant in the LAT signalosome and suggest that the THEMIS-GRB2 complex might be involved in shaping the nature of Ras signaling, thereby governing thymic selection.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , GRB2 Adaptor Protein/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Thymocytes/metabolism , Amino Acid Sequence , Cell Adhesion Molecules/metabolism , Cell Line , GRB2 Adaptor Protein/chemistry , Humans , Immunological Synapses/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Molecular Sequence Data , Nectins , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Sequence Alignment , ZAP-70 Protein-Tyrosine Kinase/metabolism
8.
J Biol Chem ; 286(6): 4072-80, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21127068

ABSTRACT

Early downstream responses of T lymphocytes following T cell antigen receptor (TCR) activation are mediated by protein complexes that assemble in domains of the plasma membrane. Using stable isotope labeling with amino acids in cell culture and mass spectrometry, we quantitatively related the proteome of αCD3 immunoisolated native TCR signaling plasma membrane domains to that of control plasma membrane fragments not engaged in TCR signaling. Proteins were sorted according to their relative enrichment in isolated TCR signaling plasma membrane domains, identifying a complex protein network that is anchored in the vicinity of activated TCR. These networks harbor widespread mediators of plasma membrane-proximal T cell activities, including propagation, balancing, and attenuation of TCR signaling, immune synapse formation, as well as cytoskeletal arrangements relative to TCR activation clusters. These results highlight the unique potential of systematic characterizations of plasma membrane-proximal T cell activation proteome in the context of its native lipid bilayer platform.


Subject(s)
Lymphocyte Activation/physiology , Membrane Proteins/metabolism , Proteome/metabolism , T-Lymphocytes/metabolism , Humans , Jurkat Cells , Membrane Proteins/immunology , Proteome/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/physiology , T-Lymphocytes/immunology
9.
Biophys J ; 96(7): 2912-7, 2009 Apr 08.
Article in English | MEDLINE | ID: mdl-19348772

ABSTRACT

We apply the astronomical data-analysis technique, Lucky imaging, to improve resolution in single molecule fluorescence microscopy. We show that by selectively discarding data points from individual single-molecule trajectories, imaging resolution can be improved by a factor of 1.6 for individual fluorophores and up to 5.6 for more complex images. The method is illustrated using images of fluorescent dye molecules and quantum dots, and the in vivo imaging of fluorescently labeled linker for activation of T cells.


Subject(s)
Microscopy, Fluorescence/methods , Adaptor Proteins, Signal Transducing/analysis , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line, Tumor , Cell Survival , Fluorescence , Fluorescent Dyes/metabolism , Image Processing, Computer-Assisted , Membrane Proteins/analysis , Membrane Proteins/metabolism , Mice , Phosphoproteins/analysis , Phosphoproteins/metabolism , Quantum Dots , Sensitivity and Specificity , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
10.
EMBO J ; 28(5): 466-76, 2009 Mar 04.
Article in English | MEDLINE | ID: mdl-19177148

ABSTRACT

Activating stimuli for T lymphocytes are transmitted through plasma membrane domains that form at T-cell antigen receptor (TCR) signalling foci. Here, we determined the molecular lipid composition of immunoisolated TCR activation domains. We observed that they accumulate cholesterol, sphingomyelin and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate the accumulation of specific molecular lipid species with the specific plasma membrane condensation at sites of TCR activation and with early TCR activation responses.


Subject(s)
Membrane Lipids/metabolism , Membrane Microdomains/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/physiology , T-Lymphocytes/metabolism , Cholesterol/metabolism , Fatty Acids, Unsaturated/metabolism , Humans , Jurkat Cells , Lymphocyte Activation , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism , Phosphatidylinositols/metabolism , Phosphatidylserines/metabolism , Protein Structure, Tertiary , Receptors, Transferrin/metabolism , Sphingomyelins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...