Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Clin Med ; 12(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37568428

ABSTRACT

GOAL: The purpose of this review is to provide a systematic and comprehensive overview of the available literature on the treatment of an early prosthetic joint infection (PJI) after revision total knee arthroplasty (TKA) and provide treatment guidelines. METHODS: This systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The search was conducted using the electronic databases of PubMed, Trip, Cochrane, Embase, LILACS and SciElo. After the inclusion of the relevant articles, we extracted the data and results to compose a treatment algorithm for early and acute PJI after revision TKA. RESULTS: After applying the in- and exclusion criteria, seven articles were included in this systematic review focusing on debridement, antibiotics and implant retention (DAIR) for PJI following revision TKA, of which one was prospective and six were retrospective. All studies were qualified as level IV evidence. CONCLUSIONS: The current literature suggests that DAIR is a valid treatment option for early infections after revision TKA with success rates of 50-70%. Repeat DAIR shows success rates of around 50%. Further research should be aimed at predicting successful (repeat/two-stage) DAIRs in larger study populations, antibiotic regimes and the cost effectiveness of a second DAIR after revision TKA.

2.
Bone Jt Open ; 4(2): 53-61, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36718581

ABSTRACT

AIMS: The aim of this study was to assess the clinical and radiological results of patients who were revised using a custom-made triflange acetabular component (CTAC) for component loosening and pelvic discontinuity (PD) after previous total hip arthroplasty (THA). METHODS: Data were extracted from a single centre prospective database of patients with PD who were treated with a CTAC. Patients were included if they had a follow-up of two years. The Hip Disability and Osteoarthritis Outcome Score (HOOS), modified Oxford Hip Score (mOHS), EurQol EuroQoL five-dimension three-level (EQ-5D-3L) utility, and Numeric Rating Scale (NRS), including visual analogue score (VAS) for pain, were gathered at baseline, and at one- and two-year follow-up. Reasons for revision, and radiological and clinical complications were registered. Trends over time are described and tested for significance and clinical relevance. RESULTS: A total of 18 females with 22 CTACs who had a mean age of 73.5 years (SD 7.7) were included. A significant improvement was found in HOOS (p < 0.0001), mOHS (p < 0.0001), EQ-5D-3L utility (p = 0.003), EQ-5D-3L NRS (p = 0.013), VAS pain rest (p = 0.008), and VAS pain activity (p < 0.0001) between baseline and final follow-up. Minimal clinically important improvement in mOHS and the HOOS Physical Function Short Form (HOOS-PS) was observed in 16 patients (73%) and 14 patients (64%), respectively. Definite healing of the PD was observed in 19 hips (86%). Complications included six cases with broken screws (27%), four cases (18%) with bony fractures, and one case (4.5%) with sciatic nerve paresthesia. One patient with concurrent bilateral PD had revision surgery due to recurrent dislocations. No revision surgery was performed for screw failure or implant breakage. CONCLUSION: CTAC in patients with THA acetabular loosening and PD can result in stable constructs and significant improvement in functioning and health-related quality of life at two years' follow-up. Further follow-up is necessary to determine the mid- to long-term outcome.Cite this article: Bone Jt Open 2023;4(2):53-61.

3.
Int J Mol Sci ; 22(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34445320

ABSTRACT

Meniscus injuries can be highly debilitating and lead to knee osteoarthritis. Progenitor cells from the meniscus could be a superior cell type for meniscus repair and tissue-engineering. The purpose of this study is to characterize meniscus progenitor cells isolated by differential adhesion to fibronectin (FN-prog). Human osteoarthritic menisci were digested, and FN-prog were selected by differential adhesion to fibronectin. Multilineage differentiation, population doubling time, colony formation, and MSC surface markers were assessed in the FN-prog and the total meniscus population (Men). Colony formation was compared between outer and inner zone meniscus digest. Chondrogenic pellet cultures were performed for redifferentiation. FN-prog demonstrated multipotency. The outer zone FN-prog formed more colonies than the inner zone FN-prog. FN-prog displayed more colony formation and a higher proliferation rate than Men. FN-prog redifferentiated in pellet culture and mostly adhered to the MSC surface marker profile, except for HLA-DR receptor expression. This is the first study that demonstrates differential adhesion to fibronectin for the isolation of a progenitor-like population from the meniscus. The high proliferation rates and ability to form meniscus extracellular matrix upon redifferentiation, together with the broad availability of osteoarthritis meniscus tissue, make FN-prog a promising cell type for clinical translation in meniscus tissue-engineering.


Subject(s)
Cell Adhesion , Fibronectins/metabolism , Meniscus/cytology , Mesenchymal Stem Cells/cytology , Tissue Engineering/methods , Aged , Aged, 80 and over , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Chondrocytes/physiology , Chondrogenesis , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Middle Aged , Tissue Scaffolds/chemistry
4.
Am J Sports Med ; 49(4): 941-947, 2021 03.
Article in English | MEDLINE | ID: mdl-33591794

ABSTRACT

BACKGROUND: Long-term clinical evaluation of patient outcomes can steer treatment choices and further research for cartilage repair. Using mesenchymal stromal cells (MSCs) as signaling cells instead of stem cells is a novel approach in the field. PURPOSE: To report the 5-year follow-up of safety, clinical efficacy, and durability after treatment of symptomatic cartilage defects in the knee with allogenic MSCs mixed with recycled autologous chondrons in first-in-human study of 1-stage cartilage repair. STUDY DESIGN: Case series; Level of evidence, 4. METHODS: This study is an investigator-driven study aiming at the feasibility and safety of this innovative cartilage repair procedure. Between 2013 and 2014, a total of 35 patients (mean ± SD age, 36 ± 8 years) were treated with a 1-stage cartilage repair procedure called IMPACT (Instant MSC Product Accompanying Autologous Chondron Transplantation) for a symptomatic cartilage defect on the femoral condyle or trochlear groove. Subsequent follow-up after initial publication was performed annually using online patient-reported outcome measures with a mean follow-up of 61 months (range, 56-71 months). Patient-reported outcome measures included the KOOS (Knee injury and Osteoarthritis Outcome Score), visual analog scale for pain, and EuroQol-5 Dimensions. All clinical data and serious adverse events, including additional treatment received after IMPACT, were recorded. A failure of IMPACT was defined as a chondral defect of at least 20% of the index lesion with a need for a reintervention including a surgical procedure or an intra-articular injection. RESULTS: Using allogenic MSCs, no signs of a foreign body response or serious adverse reactions were recorded after 5 years. The majority of patients showed statistically significant and clinically relevant improvement in the KOOS and all its subscales from baseline to 60 months: overall, 57.9 ± 16.3 to 78.9 ± 17.7 (P < .001); Pain, 62.3 ± 18.9 to 79.9 ± 20.0 (P = .03); Function, 61.6 ± 16.5 to 79.4 ± 17.3 (P = .01); Activities of Daily Living, 69.0 ± 19.0 to 89.9 ± 14.9 (P < .001); Sports and Recreation, 32.3 ± 22.6 to 57.5 ± 30.0 (P = .02); and Quality of Life, 25.9 ± 12.9 to 55.8 ± 26.8 (P < .001). The visual analog scale score for pain improved significantly from baseline (45.3 ± 23.6) to 60 months (15.4 ± 13.4) (P < .001). Five cases required reintervention. CONCLUSION: This is the first study showing the midterm safety and efficacy of the proof of concept that allogenic MSCs augment 1-stage articular cartilage repair. The absence of serious adverse events and the clinical outcome support the longevity of this unique concept. These data support MSC-augmented chondron transplantation (IMPACT) as a safe 1-stage surgical solution that is considerably more cost-effective and a logistically advantageous alternative to conventional 2-stage cell-based therapy for articular chondral defects in the knee.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Activities of Daily Living , Adult , Cartilage, Articular/surgery , Follow-Up Studies , Humans , Knee Joint , Magnetic Resonance Imaging , Quality of Life , Transplantation, Autologous , Treatment Outcome
5.
Orthop J Sports Med ; 8(7): 2325967120933895, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32782901

ABSTRACT

BACKGROUND: Anterior cruciate ligament (ACL) tear and meniscal injury often co-occur. The protective effect of early ACL reconstruction (ACLR) on meniscal injury and its repair is not clear. Critical literature review can support or change clinical strategies and identify gaps in the available evidence. PURPOSE: To assess the protective effect of ACLR on the meniscus and provide clinical guidelines for managing ACL tears and subsequent meniscal injury. We aimed to answer the following questions: (1) Does ACLR protect the meniscus from subsequent injury? (2) Does early ACLR reduce secondary meniscal injury compared with delayed ACLR? (3) Does ACLR protect the repaired meniscus? STUDY DESIGN: Systematic review; Level of evidence, 4. METHODS: A systematic review was performed through use of MEDLINE and Embase electronic databases according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Search terms included ACL, reconstruction, and meniscus. Studies describing primary ACLR and nonoperative treatment in adult patients were included, as well as studies indicating timing of ACLR. The included articles were assessed individually for risk of bias through use of the modified Cochrane Risk of Bias and MINORS (Methodological Index for Nonrandomized Studies) tools. RESULTS: One level 2 randomized controlled trial and several level 3 and 4 studies indicated a protective effect of ACLR on meniscal injury compared with nonoperative treatment. There was weak (level 3) evidence of the protective effect of early ACLR on the meniscus. Meniscal repair failure was less frequent in patients with ACL reconstruction than in patients with ACL deficiency (level 4). CONCLUSION: The evidence collected in this review suggests a protective effect of ACLR for subsequent meniscal injury (level 2 evidence). ACLR should be performed within 3 months of injury (level 3 evidence). Meniscal injury requiring surgical repair in the ACL-deficient knee should be treated with repair accompanied by ACLR (level 3 evidence). The paucity of level 2 studies prevents the formation of guidelines based on level 1 evidence. There is a strong clinical need for randomized or prospective trials to provide guidelines on timing of ACLR and meniscal repair.

6.
Acta Orthop ; 91(6): 743-749, 2020 12.
Article in English | MEDLINE | ID: mdl-32698659

ABSTRACT

Background and purpose - Platelet-rich plasma (PRP) is broadly used in the treatment of knee osteoarthritis, but clinical outcomes are highly variable. We evaluated the effectiveness of intra-articular injections with Autologous Conditioned Plasma (ACP), a commercially available form of platelet-rich plasma, in a tertiary referral center. Second, we aimed to identify which patient factors are associated with clinical outcome. Patients and methods - 140 patients (158 knees) with knee osteoarthritis (Kellgren and Lawrence grade 0-4) were treated with 3 intra-articular injections of ACP. The Knee Injury and Osteoarthritis Outcome Score (KOOS), pain (Numeric Rating Scale; NRS), and general health (EuroQol 5 Dimensions; EQ5D) were assessed at baseline and 3, 6, and 12 months' follow-up. The effect of sex, age, BMI, Kellgren and Lawrence grade, history of knee trauma, and baseline KOOS on clinical outcome at 6 and 12 months was determined using linear regression. Results - Mean KOOS increased from 37 at baseline to 44 at 3 months, 45 at 6 months, and 43 at 12 months' follow-up. Mean NRS-pain decreased from 6.2 at baseline to 5.3 at 3 months, 5.2 at 6 months, and 5.3 at 12 months. EQ5D did not change significantly. There were no predictors of clinical outcome. Interpretation - ACP does not lead to a clinically relevant improvement (exceeding the minimal clinically important difference) in patients suffering from knee osteoarthritis. None of the investigated factors predicts clinical outcome.


Subject(s)
Arthralgia , Injections, Intra-Articular , Osteoarthritis, Knee , Platelet-Rich Plasma , Age Factors , Arthralgia/diagnosis , Arthralgia/etiology , Body Mass Index , Female , Follow-Up Studies , Humans , Injections, Intra-Articular/methods , Injections, Intra-Articular/statistics & numerical data , Male , Medical History Taking/statistics & numerical data , Middle Aged , Netherlands/epidemiology , Osteoarthritis, Knee/epidemiology , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/therapy , Prognosis , Risk Assessment/methods , Sex Factors , Treatment Outcome
9.
Stem Cells ; 35(8): 1984-1993, 2017 08.
Article in English | MEDLINE | ID: mdl-28600828

ABSTRACT

MSCs are known as multipotent mesenchymal stem cells that have been found capable of differentiating into various lineages including cartilage. However, recent studies suggest MSCs are pericytes that stimulate tissue repair through trophic signaling. Aimed at articular cartilage repair in a one-stage cell transplantation, this study provides first clinical evidence that MSCs stimulate autologous cartilage repair in the knee without engrafting in the host tissue. A phase I (first-in-man) clinical trial studied the one-stage application of allogeneic MSCs mixed with 10% or 20% recycled defect derived autologous chondrons for the treatment of cartilage defects in 35 patients. No treatment-related serious adverse events were found and statistically significant improvement in clinical outcome shown. Magnetic resonance imaging and second-look arthroscopies showed consistent newly formed cartilage tissue. A biopsy taken from the center of the repair tissue was found to have hyaline-like features with a high concentration of proteoglycans and type II collagen. DNA short tandem repeat analysis delivered unique proof that the regenerated tissue contained patient-DNA only. These findings support the hypothesis that allogeneic MSCs stimulate a regenerative host response. This first-in-man trial supports a paradigm shift in which MSCs are applied as augmentations or "signaling cells" rather than differentiating stem cells and opens doors for other applications. Stem Cells 2017;35:1984-1993.


Subject(s)
Cartilage, Articular/pathology , Chondrocytes/transplantation , Mesenchymal Stem Cell Transplantation , Adult , Arthroscopy , Cartilage, Articular/diagnostic imaging , Demography , Female , Humans , Magnetic Resonance Imaging , Male , Mesenchymal Stem Cell Transplantation/adverse effects , Microsatellite Repeats/genetics , Transplantation, Autologous/adverse effects , Treatment Outcome
10.
Orthop J Sports Med ; 5(2): 2325967117690131, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28321424

ABSTRACT

BACKGROUND: Meniscus damage can be caused by trauma or degeneration and is therefore common among patients of all ages. Repair or regeneration of the menisci could be of great importance not only for pain relief or regaining function but also to prevent degenerative disease and osteoarthritis. Current treatment does not offer consistent long-term improvement. Although preclinical research focusing on augmentation of meniscal tear repair and regeneration after meniscectomy is encouraging, clinical translation remains difficult. PURPOSE: To systematically evaluate the literature on in vivo meniscus regeneration and explore the optimal cell sources and conditions for clinical translation. We aimed at thorough evaluation of current evidence as well as clarifying the challenges for future preclinical and clinical studies. STUDY DESIGN: Systematic review. METHODS: A search was conducted using the electronic databases of MEDLINE, Embase, and the Cochrane Collaboration. Search terms included meniscus, regeneration, and cell-based. RESULTS: After screening 81 articles based on title and abstract, 51 articles on in vivo meniscus regeneration could be included; 2 additional articles were identified from the references. Repair and regeneration of the meniscus has been described by intra-articular injection of multipotent mesenchymal stromal (stem) cells from adipose tissue, bone marrow, synovium, or meniscus or the use of these cell types in combination with implantable or injectable scaffolds. The use of fibrochondrocytes, chondrocytes, and transfected myoblasts for meniscus repair and regeneration is limited to the combination with different scaffolds. The comparative in vitro and in vivo studies mentioned in this review indicate that the use of allogeneic cells is as successful as the use of autologous cells. In addition, the implantation or injection of cell-seeded scaffolds increased tissue regeneration and led to better structural organization compared with scaffold implantation or injection of a scaffold alone. None of the studies mentioned in this review compare the effectiveness of different (cell-seeded) scaffolds. CONCLUSION: There is heterogeneity in animal models, cell types, and scaffolds used, and limited comparative studies are available. The comparative in vivo research that is currently available is insufficient to draw strong conclusions as to which cell type is the most promising. However, there is a vast amount of in vivo research on the use of different types of multipotent mesenchymal stromal (stem) cells in different experimental settings, and good results are reported in terms of tissue formation. None of these studies compare the effectiveness of different cell-scaffold combinations, making it hard to conclude which scaffold has the greatest potential.

11.
J Tissue Eng Regen Med ; 11(10): 2950-2959, 2017 10.
Article in English | MEDLINE | ID: mdl-27401932

ABSTRACT

Both the complexity of clinically applied tissue engineering techniques for articular cartilage repair - such as autologous chondrocyte implantation (ACI) - plus increasing healthcare costs, and market competition, are forcing a shift in focus from two-stage to single-stage interventions that are more cost-effective. Early health economic models are expected to provide essential insight in the parameters driving the cost-effectiveness of new interventions before they are introduced into clinical practice. The present study estimated the likely incremental cost-effectiveness ratio (ICER) of a new investigator-driven single-stage procedure (IMPACT) compared with both microfracture and ACI, and identified those parameters that affect the cost-effectiveness. A decision tree with clinical health states was constructed. The ICER was calculated by dividing the incremental societal costs by the incremental Quality Adjusted Life Years (QALYs). Costs were determined from a societal perspective. A headroom analysis was performed to determine the maximum price of IMPACT compared with both ACI and microfracture, assuming a societal willingness to pay (WTP) of €30 000/QALY. One-way sensitivity analysis was performed to identify those parameters that drive the cost-effectiveness. The societal costs of IMPACT, ACI and microfracture were found to be €11 797, €29 741 and €6081, respectively. An 8% increase in all utilities after IMPACT changes the ICER of IMPACT vs. microfracture from €147 513/QALY to €28 588/QALY. Compared with ACI, IMPACT is less costly, which is largely attributable to the cell expansion procedure that has been rendered redundant. While microfracture can be considered the most cost-effective treatment option for smaller defects, a single-stage tissue engineering procedure can replace ACI to improve the cost-effectiveness for treating larger defects, especially if clinical non-inferiority can be achieved. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Cartilage, Articular/pathology , Health Care Costs , Models, Economic , Regenerative Medicine/economics , Regenerative Medicine/methods , Wound Healing , Chondrocytes/cytology , Cost-Benefit Analysis , Humans , Probability , Quality-Adjusted Life Years
12.
Stem Cells ; 35(1): 256-264, 2017 01.
Article in English | MEDLINE | ID: mdl-27507787

ABSTRACT

Traditionally, mesenchymal stem cells (MSCs) isolated from adult bone marrow were described as being capable of differentiating to various lineages including cartilage. Despite increasing interest in these MSCs, concerns regarding their safety, in vivo behavior and clinical effectiveness have restrained their clinical application. We hypothesized that MSCs have trophic effects that stimulate recycled chondrons (chondrocytes with their native pericellular matrix) to regenerate cartilage. Searching for a proof of principle, this phase I (first-in-man) clinical trial applied allogeneic MSCs mixed with either 10% or 20% recycled autologous cartilage-derived cells (chondrons) for treatment of cartilage defects in the knee in symptomatic cartilage defect patients. This unique first in man series demonstrated no treatment-related adverse events up to one year postoperatively. At 12 months, all patients showed statistically significant improvement in clinical outcome compared to baseline. Magnetic resonance imaging and second-look arthroscopies showed completely filled defects with regenerative cartilage tissue. Histological analysis on biopsies of the grafts indicated hyaline-like regeneration with a high concentration of proteoglycans and type II collagen. Short tandem repeat analysis showed the regenerative tissue only contained patient-own DNA. These findings support the novel insight that the use of allogeneic MSCs is safe and opens opportunities for other applications. Stem cell-induced paracrine mechanisms may play an important role in the chondrogenesis and successful tissue regeneration found. Stem Cells 2017;35:256-264.


Subject(s)
Cartilage, Articular/pathology , Cartilage, Articular/physiopathology , Chondrocytes/cytology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Regeneration , Adult , Arthroscopy , Cartilage, Articular/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Mesenchymal Stem Cell Transplantation/adverse effects , Microsatellite Repeats/genetics , Transplantation, Autologous , Treatment Outcome
13.
Acta Orthop ; 86(6): 678-83, 2015.
Article in English | MEDLINE | ID: mdl-26364842

ABSTRACT

BACKGROUND AND PURPOSE: Aseptic loosening and infection are 2 of the most common causes of revision of hip implants. Antibiotic prophylaxis reduces not only the rate of revision due to infection but also the rate of revision due to aseptic loosening. This suggests under-diagnosis of infections in patients with presumed aseptic loosening and indicates that current diagnostic tools are suboptimal. In a previous multicenter study on 176 patients undergoing revision of a total hip arthroplasty due to presumed aseptic loosening, optimized diagnostics revealed that 4-13% of the patients had a low-grade infection. These infections were not treated as such, and in the current follow-up study the effect on mid- to long-term implant survival was investigated. PATIENTS AND METHODS: Patients were sent a 2-part questionnaire. Part A requested information about possible re-revisions of their total hip arthroplasty. Part B consisted of 3 patient-related outcome measure questionnaires (EQ5D, Oxford hip score, and visual analog scale for pain). Additional information was retrieved from the medical records. The group of patients found to have a low-grade infection was compared to those with aseptic loosening. RESULTS: 173 of 176 patients from the original study were included. In the follow-up time between the revision surgery and the current study (mean 7.5 years), 31 patients had died. No statistically significant difference in the number of re-revisions was found between the infection group (2 out of 21) and the aseptic loosening group (13 out of 152); nor was there any significant difference in the time to re-revision. Quality of life, function, and pain were similar between the groups, but only 99 (57%) of the patients returned part B. INTERPRETATION: Under-diagnosis of low-grade infection in conjunction with presumed aseptic revision of total hip arthroplasty may not affect implant survival.


Subject(s)
Arthroplasty, Replacement, Hip/adverse effects , Prosthesis Failure , Prosthesis-Related Infections/diagnosis , Aged , Diagnostic Errors , Female , Humans , Male , Prospective Studies , Prosthesis Failure/etiology , Prosthesis-Related Infections/complications , Quality of Life , Surveys and Questionnaires , Time Factors
14.
Tissue Eng Part A ; 21(19-20): 2536-47, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26166387

ABSTRACT

Using a combination of articular chondrocytes (ACs) and mesenchymal stromal cells (MSCs) has shown to be a viable option for a single-stage cell-based treatment of focal cartilage defects. However, there is still considerable debate whether MSCs differentiate or have a chondroinductive role through trophic factors. In addition, it remains unclear whether direct cell-cell contact is necessary for chondrogenesis. Therefore, the aim of this study was to investigate whether direct or indirect cell-cell contact between ACs and MSCs is essential for increased cartilage production in different cellular environments and elucidate the mechanisms behind these cellular interactions. Human ACs and MSCs were cultured in a 10:90 ratio in alginate beads, fibrin scaffolds, and pellets. Cells were mixed in direct cocultures, separated by a Transwell filter (indirect cocultures), or cultured with conditioned medium. Short tandem repeat analysis revealed that the percentages of ACs increased during culture, while those of MSCs decreased, with the biggest change in fibrin glue scaffolds. For alginate, where the lack of cell-cell contact could be confirmed by histological analysis, no difference was found in matrix production between direct and indirect cocultures. For fibrin scaffolds and pellet cultures, an increased glycosaminoglycan production and type II collagen deposition were found in direct cocultures compared with indirect cocultures and conditioned medium. Positive connexin 43 staining and transfer of cytosolic calcein indicated communication through gap junctions in direct cocultures. Taken together, these results suggest that MSCs stimulate cartilage formation when placed in close proximity to chondrocytes and that direct cell-cell contact and communication through gap junctions are essential in this chondroinductive interplay.


Subject(s)
Chondrocytes/cytology , Chondrogenesis/physiology , Mesenchymal Stem Cells/cytology , Multipotent Stem Cells/cytology , Aged , Cartilage, Articular/cytology , Cell Differentiation/physiology , Cells, Cultured , Chondrocytes/metabolism , Coculture Techniques , Collagen Type II/metabolism , Female , Glycosaminoglycans/metabolism , Humans , Male , Mesenchymal Stem Cells/metabolism , Middle Aged , Multipotent Stem Cells/metabolism
15.
Stem Cell Res Ther ; 6: 94, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25976213

ABSTRACT

The evolution of articular cartilage repair procedures has resulted in a variety of cell-based therapies that use both autologous and allogeneic mesenchymal stromal cells (MSCs). As these cells are increasingly available and show promising results both in vitro and in vivo, cell-based strategies, which aim to improve ease of use and cost-effectiveness, are progressively explored. The use of MSCs in cartilage repair makes it possible to develop single-stage cell-based therapies. However, true single-stage procedures rely on one intervention, which will limit cell sources to fraction concentrates containing autologous MSCs or culture-expanded allogeneic MSCs. So far, it seems both autologous and allogeneic cells can safely be applied, but clinical studies are still ongoing and little information on clinical outcome is available. Further development of cell-based therapies may lead to clinical-grade, standardized, off-the-shelf products with easy handling for orthopedic surgeons. Although as of yet no preclinical or clinical studies are ongoing which explore the use of induced pluripotent stem cells for cartilage repair, a good manufacturing practice-grade induced pluripotent stem cell line might become the basis for such a product in the future, providing that cell fate can be controlled. The use of stem cells in clinical trials brings along new ethical issues, such as proper controls and selecting primary outcome measures. More clinical trials are needed to estimate detailed risk-benefit ratios and trials must be carefully designed to minimize risks and burdens for patients while choosing outcome measures that allow for adequate comparison with results from similar trials. In this review, we discuss the different aspects of new stem cell-based treatments, including safety and ethical issues, as well as provide an overview of current clinical trials exploring these approaches and future perspectives.


Subject(s)
Cartilage Diseases/therapy , Induced Pluripotent Stem Cells/transplantation , Mesenchymal Stem Cell Transplantation , Clinical Trials as Topic , Humans , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Transplantation, Autologous , Transplantation, Homologous
16.
Stem Cells Transl Med ; 3(6): 723-33, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24763684

ABSTRACT

Cartilage damage and osteoarthritis (OA) impose an important burden on society, leaving both young, active patients and older patients disabled and affecting quality of life. In particular, cartilage injury not only imparts acute loss of function but also predisposes to OA. The increase in knowledge of the consequences of these diseases and the exponential growth in research of regenerative medicine have given rise to different treatment types. Of these, cell-based treatments are increasingly applied because they have the potential to regenerate cartilage, treat symptoms, and ultimately prevent or delay OA. Although these approaches give promising results, they require a costly in vitro cell culture procedure. The answer may lie in single-stage procedures that, by using cell combinations, render in vitro expansion redundant. In the last two decades, cocultures of cartilage cells and a variety of (mesenchymal) stem cells have shown promising results as different studies report cartilage regeneration in vitro and in vivo. However, there is considerable debate regarding the mechanisms and cellular interactions that lead to chondrogenesis in these models. This review, which included 52 papers, provides a systematic overview of the data presented in the literature and tries to elucidate the mechanisms that lead to chondrogenesis in stem cell cocultures with cartilage cells. It could serve as a basis for research groups and clinicians aiming at designing and implementing combined cellular technologies for single-stage cartilage repair and treatment or prevention of OA.


Subject(s)
Cartilage/metabolism , Cell Communication , Chondrocytes/metabolism , Chondrogenesis , Coculture Techniques , Regeneration , Regenerative Medicine/methods , Stem Cells/metabolism , Animals , Cartilage/pathology , Cartilage/transplantation , Cells, Cultured , Chondrocytes/pathology , Chondrocytes/transplantation , Humans , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/surgery , Stem Cell Transplantation , Stem Cells/pathology
17.
Orthop J Sports Med ; 2(9): 2325967114550781, 2014 Sep.
Article in English | MEDLINE | ID: mdl-26535366

ABSTRACT

BACKGROUND: There is a need for tools to predict the chondrogenic potency of autologous cells for cartilage repair. PURPOSE: To evaluate previously proposed chondrogenic biomarkers and to identify new biomarkers in the chondrocyte transcriptome capable of predicting clinical success or failure after autologous chondrocyte implantation. STUDY DESIGN: Controlled laboratory study and case-control study; Level of evidence, 3. METHODS: Five patients with clinical improvement after autologous chondrocyte implantation and 5 patients with graft failures 3 years after implantation were included. Surplus chondrocytes from the transplantation were frozen for each patient. Each chondrocyte sample was subsequently thawed at the same time point and cultured for 1 cell doubling, prior to RNA purification and global microarray analysis. The expression profiles of a set of predefined marker genes (ie, collagen type II α1 [COL2A1], bone morphogenic protein 2 [BMP2], fibroblast growth factor receptor 3 [FGFR3], aggrecan [ACAN], CD44, and activin receptor-like kinase receptor 1 [ACVRL1]) were also evaluated. RESULTS: No significant difference in expression of the predefined marker set was observed between the success and failure groups. Thirty-nine genes were found to be induced, and 38 genes were found to be repressed between the 2 groups prior to autologous chondrocyte implantation, which have implications for cell-regulating pathways (eg, apoptosis, interleukin signaling, and ß-catenin regulation). CONCLUSION: No expressional differences that predict clinical outcome could be found in the present study, which may have implications for quality control assessments of autologous chondrocyte implantation. The subtle difference in gene expression regulation found between the 2 groups may strengthen the basis for further research, aiming at reliable biomarkers and quality control for tissue engineering in cartilage repair. CLINICAL RELEVANCE: The present study shows the possible limitations of using gene expression before transplantation to predict the chondrogenic and thus clinical potency of the cells. This result is especially important as the chondrogenic potential of the chondrocytes is currently part of quality control measures according to European and American legislations regarding advanced therapies.

19.
Am J Sports Med ; 41(7): 1695-702, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23364897

ABSTRACT

BACKGROUND: While MRI can provide a detailed morphological evaluation after articular cartilage repair, its additional value in determining clinical outcome has yet to be determined. PURPOSE: To evaluate the correlation between MRI and clinical outcome after cartilage repair and to identify parameters that are most important in determining clinical outcome. STUDY DESIGN: Systematic review and meta-analysis. METHODS: A systematic search was performed in Embase, MEDLINE, and the Cochrane Collaboration. Articles were screened for relevance and appraised for quality. Guidelines in the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) Statement were used. Chi-square tests were performed to find variables that could determine correlation between clinical and radiological parameters. RESULTS: A total of 32 articles (total number of patients, 1019) were included. A majority (81%) were case series or cohort studies that used similar standardized MRI techniques. The mean Coleman score was 63 (range, 42-96). For the majority of MRI parameters, limited or no correlation was found. Nine studies (28%) found a correlation between clinical outcome and the composite magnetic resonance observation of cartilage repair tissue (MOCART) or Henderson score and 7 (22%) with defect fill. In 5 studies, a weak to moderate correlation was found between clinical outcome and the T2 index (mean Pearson coefficient r = .53). CONCLUSION: Strong evidence to determine whether morphological MRI is reliable in predicting clinical outcome after cartilage repair is lacking. Future research aiming specifically at clinical sensitivity of advanced morphological and biochemical MRI techniques after articular cartilage repair could be of great importance to the field.


Subject(s)
Cartilage, Articular/injuries , Knee Injuries/surgery , Arthroplasty/standards , Humans , Magnetic Resonance Imaging/standards , Predictive Value of Tests , Reproducibility of Results , Treatment Outcome
20.
Cartilage ; 4(3 Suppl): 5S-12S, 2013 Jul.
Article in English | MEDLINE | ID: mdl-26069664

ABSTRACT

Early osteoarthritis (OA) is increasingly being recognized in patients who wish to remain active while not accepting the limitations of conservative treatment or joint replacement. The aim of this systematic review was to evaluate the existing evidence for treatment of patients with early OA using articular cartilage repair techniques. A systematic search was performed in EMBASE, MEDLINE, and the Cochrane collaboration. Articles were screened for relevance and appraised for quality. Nine articles of generally low methodological quality (mean Coleman score 58) including a total of 502 patients (mean age range = 36-57 years) could be included. In the reports, both radiological and clinical criteria for early OA were applied. Of all patients included in this review, 75% were treated with autologous chondrocyte implantation. Good short-term clinical outcome up to 9 years was shown. Failure rates varied from 8% to 27.3%. The conversion to total knee arthroplasty rate was 2.5% to 6.5%. Although a (randomized controlled) trial in this patient category with long-term follow-up is needed, the literature suggests autologous chondrocyte implantation could provide good short- to mid-term clinical outcome and delay the need for total knee arthroplasty. The use of standardized criteria for early OA and implementation of (randomized) trials with long-term follow-up may allow for further expansion of the research field in articular cartilage repair to the challenging population with (early) OA.

SELECTION OF CITATIONS
SEARCH DETAIL
...