Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(15): eadf7001, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608030

ABSTRACT

Genes implicated in translation control have been associated with autism spectrum disorders (ASDs). However, some important genetic causes of autism, including the 16p11.2 microdeletion, bear no obvious connection to translation. Here, we use proteomics, genetics, and translation assays in cultured cells and mouse brain to reveal altered translation mediated by loss of the kinase TAOK2 in 16p11.2 deletion models. We show that TAOK2 associates with the translational machinery and functions as a translational brake by phosphorylating eukaryotic elongation factor 2 (eEF2). Previously, all signal-mediated regulation of translation elongation via eEF2 phosphorylation was believed to be mediated by a single kinase, eEF2K. However, we show that TAOK2 can directly phosphorylate eEF2 on the same regulatory site, but functions independently of eEF2K signaling. Collectively, our results reveal an eEF2K-independent signaling pathway for control of translation elongation and suggest altered translation as a molecular component in the etiology of some forms of ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Ursidae , Animals , Mice , Autistic Disorder/genetics , Peptide Elongation Factor 2 , Phosphorylation , Autism Spectrum Disorder/genetics , Biological Assay
2.
Article in English | MEDLINE | ID: mdl-38316556

ABSTRACT

Synapses are specialized intercellular junctions connecting pre- and postsynaptic neurons into functional neural circuits. Synaptic cell adhesion molecules (CAMs) constitute key players in synapse development that engage in homo- or heterophilic interactions across the synaptic cleft. Decades of research have identified numerous synaptic CAMs, mapped their trans-synaptic interactions, and determined their role in orchestrating synaptic connectivity. However, surprisingly little is known about the molecular mechanisms that translate trans-synaptic adhesion into the assembly of pre- and postsynaptic compartments. Here, we provide an overview of the intracellular signaling pathways that are engaged by synaptic CAMs and highlight outstanding issues to be addressed in future work.


Subject(s)
Cell Adhesion Molecules , Signal Transduction , Synapses , Synapses/metabolism , Synapses/physiology , Cell Adhesion Molecules/metabolism , Animals , Humans , Neurons/metabolism , Cell Adhesion
3.
Cell ; 186(26): 5766-5783.e25, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38134874

ABSTRACT

The enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs. Molecularly, LRRC37B binds to the secreted ligand FGF13A and to the voltage-gated sodium channel (Nav) ß-subunit SCN1B. LRRC37B concentrates inhibitory effects of FGF13A on Nav channel function, thereby reducing excitability, specifically at the AIS level. Electrophysiological recordings in adult human cortical slices reveal lower neuronal excitability in human CPNs expressing LRRC37B. LRRC37B thus acts as a species-specific modifier of human neuron excitability, linking human genome and cell evolution, with important implications for human brain function and diseases.


Subject(s)
Neurons , Pyramidal Cells , Voltage-Gated Sodium Channels , Animals , Humans , Mice , Action Potentials/physiology , Axons/metabolism , Neurons/metabolism , Voltage-Gated Sodium Channels/genetics , Voltage-Gated Sodium Channels/metabolism
4.
Nat Neurosci ; 26(6): 1021-1031, 2023 06.
Article in English | MEDLINE | ID: mdl-37188873

ABSTRACT

Early Alzheimer's disease (AD) is associated with hippocampal hyperactivity and decreased sleep quality. Here we show that homeostatic mechanisms transiently counteract the increased excitatory drive to CA1 neurons in AppNL-G-F mice, but that this mechanism fails in older mice. Spatial transcriptomics analysis identifies Pmch as part of the adaptive response in AppNL-G-F mice. Pmch encodes melanin-concentrating hormone (MCH), which is produced in sleep-active lateral hypothalamic neurons that project to CA1 and modulate memory. We show that MCH downregulates synaptic transmission, modulates firing rate homeostasis in hippocampal neurons and reverses the increased excitatory drive to CA1 neurons in AppNL-G-F mice. AppNL-G-F mice spend less time in rapid eye movement (REM) sleep. AppNL-G-F mice and individuals with AD show progressive changes in morphology of CA1-projecting MCH axons. Our findings identify the MCH system as vulnerable in early AD and suggest that impaired MCH-system function contributes to aberrant excitatory drive and sleep defects, which can compromise hippocampus-dependent functions.


Subject(s)
Alzheimer Disease , Hypothalamic Hormones , Mice , Animals , Alzheimer Disease/genetics , Neurons/physiology , Pituitary Hormones , Sleep , Mice, Transgenic
5.
Curr Opin Neurobiol ; 79: 102690, 2023 04.
Article in English | MEDLINE | ID: mdl-36805717

ABSTRACT

The highly heterogeneous nature of neuronal cell types and their connections presents a major challenge to the characterization of neural circuits at the protein level. New approaches now enable an increasingly sophisticated dissection of cell type- and cellular compartment-specific proteomes, as well as the profiling of the protein composition of specific synaptic connections. Here, we provide an overview of these approaches and discuss how they hold considerable promise toward unravelling the molecular mechanisms of neural circuit formation and function. Finally, we provide an outlook of technological developments that may bring the characterization of synaptic proteomes at the single-synapse level within reach.


Subject(s)
Proteome , Proteomics , Proteome/metabolism , Synapses/physiology , Neurons/physiology , Neural Pathways/physiology
6.
Proc Natl Acad Sci U S A ; 119(46): e2209714119, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36343267

ABSTRACT

KIF2A is an atypical kinesin that has the capacity to depolymerize microtubules. Patients carrying mutations in KIF2A suffer from progressive microcephaly and mental disabilities. While the role of this protein is well documented in neuronal migration, the relationship between its dysfunction and the pathobiology of brain disorders is unclear. Here, we report that KIF2A is dispensable for embryogenic neurogenesis but critical in postnatal stages for maturation, connectivity, and maintenance of neurons. We used a conditional approach to inactivate KIF2A in cortical progenitors, nascent postmitotic neurons, and mature neurons in mice. We show that the lack of KIF2A alters microtubule dynamics and disrupts several microtubule-dependent processes, including neuronal polarity, neuritogenesis, synaptogenesis, and axonal transport. KIF2A-deficient neurons exhibit aberrant electrophysiological characteristics, neuronal connectivity, and function, leading to their loss. The role of KIF2A is not limited to development, as fully mature neurons require KIF2A for survival. Our results emphasize an additional function of KIF2A and help explain how its mutations lead to brain disorders.


Subject(s)
Brain Diseases , Repressor Proteins , Animals , Mice , Repressor Proteins/metabolism , Kinesins/genetics , Microtubules/metabolism , Neurons/metabolism , Brain Diseases/metabolism
7.
Elife ; 112022 05 09.
Article in English | MEDLINE | ID: mdl-35532105

ABSTRACT

MDGA molecules can bind neuroligins and interfere with trans-synaptic interactions to neurexins, thereby impairing synapse development. However, the subcellular localization and dynamics of MDGAs, or their specific action mode in neurons remain unclear. Here, surface immunostaining of endogenous MDGAs and single molecule tracking of recombinant MDGAs in dissociated hippocampal neurons reveal that MDGAs are homogeneously distributed and exhibit fast membrane diffusion, with a small reduction in mobility across neuronal maturation. Knocking-down/out MDGAs using shRNAs and CRISPR/Cas9 strategies increases the density of excitatory synapses, the membrane confinement of neuroligin-1, and the phosphotyrosine level of neuroligins associated with excitatory post-synaptic differentiation. Finally, MDGA silencing reduces the mobility of AMPA receptors, increases the frequency of miniature EPSCs (but not IPSCs), and selectively enhances evoked AMPA-receptor-mediated EPSCs in CA1 pyramidal neurons. Overall, our results support a mechanism by which interactions between MDGAs and neuroligin-1 delays the assembly of functional excitatory synapses containing AMPA receptors.


Subject(s)
Nerve Tissue Proteins , Receptors, AMPA , Cell Adhesion Molecules, Neuronal/metabolism , Hippocampus/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Synapses/physiology
8.
Elife ; 112022 02 23.
Article in English | MEDLINE | ID: mdl-35195064

ABSTRACT

Single-cell RNA-seq and single-cell assay for transposase-accessible chromatin (ATAC-seq) technologies are used extensively to create cell type atlases for a wide range of organisms, tissues, and disease processes. To increase the scale of these atlases, lower the cost and pave the way for more specialized multiome assays, custom droplet microfluidics may provide solutions complementary to commercial setups. We developed HyDrop, a flexible and open-source droplet microfluidic platform encompassing three protocols. The first protocol involves creating dissolvable hydrogel beads with custom oligos that can be released in the droplets. In the second protocol, we demonstrate the use of these beads for HyDrop-ATAC, a low-cost noncommercial scATAC-seq protocol in droplets. After validating HyDrop-ATAC, we applied it to flash-frozen mouse cortex and generated 7996 high-quality single-cell chromatin accessibility profiles in a single run. In the third protocol, we adapt both the reaction chemistry and the capture sequence of the barcoded hydrogel bead to capture mRNA, and demonstrate a significant improvement in throughput and sensitivity compared to previous open-source droplet-based scRNA-seq assays (Drop-seq and inDrop). Similarly, we applied HyDrop-RNA to flash-frozen mouse cortex and generated 9508 single-cell transcriptomes closely matching reference single-cell gene expression data. Finally, we leveraged HyDrop-RNA's high capture rate to analyze a small population of fluorescence-activated cell sorted neurons from the Drosophila brain, confirming the protocol's applicability to low input samples and small cells. HyDrop is currently capable of generating single-cell data in high throughput and at a reduced cost compared to commercial methods, and we envision that HyDrop can be further developed to be compatible with novel (multi) omics protocols.


Scientists are now able to determine the order of chemical blocks, or nucleic acids, that make up the genetic code. These sequencing tools can be used to identify which genes are active within a biological sample. They do this by extracting and analysing open chromatin (regions of DNA that are accessible to the cell's machinery), or sequences of RNA (the molecular templates cells use to translate genes into working proteins). Initially, most sequencing tools could only provide an 'averaged-out' profile of the genes activated in bulk pieces of tissue which contain multiple types of cell. However, advances in technology have led to new methods that can extract and analyse open chromatin or RNA from individual cells. First, the cells are separated, via a technique called microfluidics, into tiny droplets of water along with a single bead that carries a unique barcode. The cell is then broken apart inside the droplet and the barcode within the bead gets released and attaches itself to the genetic material extracted from the cell. All the genetic material inside the droplets is then pooled together and sequenced. Researchers then use the barcode tags to identify which bits of RNA or DNA belong to each cell. Single-cell sequencing has many advantages, including being able to pinpoint precise genetic differences between healthy and abnormal cells, and to create cell atlases of whole organisms, tissues and microbial communities. But existing methods for extracting chromatin are very expensive, and there were no openly available tools for processing thousands of cells at speed. Furthermore, while several single-cell RNA sequencing tools are already freely available, they are not very sensitive or practical to use. Here, De Rop et al. have developed a new open-source platform called HyDrop that overcomes these barriers. The method entails a new type of barcoded bead and optimised elements of existing microfluidics protocols using open-source reagents. These changes created a more user-friendly workflow and increased sensitivity of sequencing at no additional cost. De Rop et al. used their new platform to screen the RNA and open chromatin of thousands of individuals cells from the brains of mice and flies. HyDrop outperformed other open-source methods when working in RNA-sequencing mode. It also provides the first open-source tool for sequencing open chromatin in single cells. Further improvements are expected as researchers tweak the platform, which for now provides an affordable alternative to existing methods.


Subject(s)
Chromatin Immunoprecipitation Sequencing , High-Throughput Nucleotide Sequencing , Animals , Chromatin , High-Throughput Nucleotide Sequencing/methods , Hydrogels , Mice , RNA , RNA-Seq , Single-Cell Analysis
9.
EMBO J ; 41(2): e108591, 2022 12 17.
Article in English | MEDLINE | ID: mdl-34842295

ABSTRACT

It is still unclear why pathological amyloid deposition initiates in specific brain regions or why some cells or tissues are more susceptible than others. Amyloid deposition is determined by the self-assembly of short protein segments called aggregation-prone regions (APRs) that favour cross-ß structure. Here, we investigated whether Aß amyloid assembly can be modified by heterotypic interactions between Aß APRs and short homologous segments in otherwise unrelated human proteins. Mining existing proteomics data of Aß plaques from AD patients revealed an enrichment in proteins that harbour such homologous sequences to the Aß APRs, suggesting heterotypic amyloid interactions may occur in patients. We identified homologous APRs from such proteins and show that they can modify Aß assembly kinetics, fibril morphology and deposition pattern in vitro. Moreover, we found three of these proteins upon transient expression in an Aß reporter cell line promote Aß amyloid aggregation. Strikingly, we did not find a bias towards heterotypic interactions in plaques from AD mouse models where Aß self-aggregation is observed. Based on these data, we propose that heterotypic APR interactions may play a hitherto unrealized role in amyloid-deposition diseases.


Subject(s)
Amyloid beta-Peptides/metabolism , Protein Interaction Maps , Proteome/metabolism , Amyloid beta-Peptides/chemistry , HEK293 Cells , Humans , Protein Binding , Protein Multimerization , Proteome/chemistry
10.
Cell Rep ; 37(3): 109828, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686348

ABSTRACT

Synaptic connectivity within adult circuits exhibits a remarkable degree of cellular and subcellular specificity. We report that the axon guidance receptor Robo2 plays a role in establishing synaptic specificity in hippocampal CA1. In vivo, Robo2 is present and required postsynaptically in CA1 pyramidal neurons (PNs) for the formation of excitatory (E) but not inhibitory (I) synapses, specifically in proximal but not distal dendritic compartments. In vitro approaches show that the synaptogenic activity of Robo2 involves a trans-synaptic interaction with presynaptic Neurexins, as well as binding to its canonical extracellular ligand Slit. In vivo 2-photon Ca2+ imaging of CA1 PNs during spatial navigation in awake behaving mice shows that preventing Robo2-dependent excitatory synapse formation cell autonomously during development alters place cell properties of adult CA1 PNs. Our results identify a trans-synaptic complex linking the establishment of synaptic specificity to circuit function.


Subject(s)
CA1 Region, Hippocampal/metabolism , Pyramidal Cells/metabolism , Receptors, Immunologic/metabolism , Synapses/metabolism , Animals , CA1 Region, Hippocampal/cytology , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Excitatory Postsynaptic Potentials , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism , Place Cells/metabolism , Receptors, Immunologic/genetics , Roundabout Proteins
11.
Biol Cell ; 113(12): 492-506, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34498765

ABSTRACT

Leucine Rich Repeat Transmembrane proteins (LRRTMs) are neuronal cell adhesion molecules involved in synapse development and plasticity. LRRTM2 is the most synaptogenic isoform of the family, and its expression is strongly restricted to excitatory synapses in mature neurons. However, the mechanisms by which LRRTM2 is trafficked and stabilized at synapses remain unknown. Here, we examine the role of LRRTM2 intracellular domain on its membrane expression and stabilization at excitatory synapses, using a knock-down strategy combined to single molecule tracking and super-resolution dSTORM microscopy. We show that LRRTM2 operates an important shift in mobility after synaptogenesis in hippocampal neurons. Knock-down of LRRTM2 during synapse formation reduced excitatory synapse density in mature neurons. Deletion of LRRTM2 C-terminal domain abolished the compartmentalization of LRRTM2 in dendrites and disrupted its synaptic enrichment. Furtheremore, we show that LRRTM2 diffusion is increased in the absence of its intracellular domain, and that the protein is more dispersed at synapses. Surprisingly, LRRTM2 confinement at synapses was strongly dependent on a YxxC motif in the C-terminal domain, but was independent of the PDZ-like binding motif ECEV. Finally, the nanoscale organization of LRRTM2 at excitatory synapses depended on its C-terminal domain, with involvement of both the PDZ-binding and YxxC motifs. Altogether, these results demonstrate that LRRTM2 trafficking and enrichment at excitatory synapses are dependent on its intracellular domain.


Subject(s)
Nerve Tissue Proteins , Neural Cell Adhesion Molecules , Cell Adhesion Molecules, Neuronal/metabolism , Cells, Cultured , Hippocampus/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism , Synapses
12.
Neuron ; 109(5): 767-777.e5, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33472038

ABSTRACT

Tau is a major driver of neurodegeneration and is implicated in over 20 diseases. Tauopathies are characterized by synaptic loss and neuroinflammation, but it is unclear if these pathological events are causally linked. Tau binds to Synaptogyrin-3 on synaptic vesicles. Here, we interfered with this function to determine the role of pathogenic Tau at pre-synaptic terminals. We show that heterozygous knockout of synaptogyrin-3 is benign in mice but strongly rescues mutant Tau-induced defects in long-term synaptic plasticity and working memory. It also significantly rescues the pre- and post-synaptic loss caused by mutant Tau. However, Tau-induced neuroinflammation remains clearly upregulated when we remove the expression of one allele of synaptogyrin-3. Hence neuroinflammation is not sufficient to cause synaptic loss, and these processes are separately induced in response to mutant Tau. In addition, the pre-synaptic defects caused by mutant Tau are enough to drive defects in cognitive tasks.


Subject(s)
Memory Disorders/physiopathology , Microglia/physiology , Presynaptic Terminals/physiology , Synaptogyrins/physiology , tau Proteins/physiology , Animals , Encephalitis/physiopathology , Female , Hippocampus/physiopathology , Hippocampus/ultrastructure , Male , Mice, Knockout , Neuronal Plasticity , Presynaptic Terminals/ultrastructure , Synaptogyrins/genetics
14.
Nat Commun ; 11(1): 5171, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057002

ABSTRACT

Excitatory and inhibitory neurons are connected into microcircuits that generate circuit output. Central in the hippocampal CA3 microcircuit is the mossy fiber (MF) synapse, which provides powerful direct excitatory input and indirect feedforward inhibition to CA3 pyramidal neurons. Here, we dissect its cell-surface protein (CSP) composition to discover novel regulators of MF synaptic connectivity. Proteomic profiling of isolated MF synaptosomes uncovers a rich CSP composition, including many CSPs without synaptic function and several that are uncharacterized. Cell-surface interactome screening identifies IgSF8 as a neuronal receptor enriched in the MF pathway. Presynaptic Igsf8 deletion impairs MF synaptic architecture and robustly decreases the density of bouton filopodia that provide feedforward inhibition. Consequently, IgSF8 loss impairs excitation/inhibition balance and increases excitability of CA3 pyramidal neurons. Our results provide insight into the CSP landscape and interactome of a specific excitatory synapse and reveal IgSF8 as a critical regulator of CA3 microcircuit connectivity and function.


Subject(s)
CA3 Region, Hippocampal/physiology , Carrier Proteins/metabolism , Excitatory Postsynaptic Potentials/physiology , Membrane Proteins/metabolism , Mossy Fibers, Hippocampal/metabolism , Pyramidal Cells/physiology , Animals , Carrier Proteins/genetics , Cells, Cultured , HEK293 Cells , Humans , Membrane Proteins/genetics , Mice , Mice, Knockout , Patch-Clamp Techniques , Primary Cell Culture , Proteomics , Rats , Synaptosomes/metabolism
15.
Mol Neurodegener ; 15(1): 3, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31915042

ABSTRACT

The amyloid-ß (Aß) peptide, the primary constituent of amyloid plaques found in Alzheimer's disease (AD) brains, is derived from sequential proteolytic processing of the Amyloid Precursor Protein (APP). However, the contribution of different cell types to Aß deposition has not yet been examined in an in vivo, non-overexpression system. Here, we show that endogenous APP is highly expressed in a heterogeneous subset of GABAergic interneurons throughout various laminae of the hippocampus, suggesting that these cells may have a profound contribution to AD plaque pathology. We then characterized the laminar distribution of amyloid burden in the hippocampus of an APP knock-in mouse model of AD. To examine the contribution of GABAergic interneurons to plaque pathology, we blocked Aß production specifically in these cells using a cell type-specific knock-out of BACE1. We found that during early stages of plaque deposition, interneurons contribute to approximately 30% of the total plaque load in the hippocampus. The greatest contribution to plaque load (75%) occurs in the stratum pyramidale of CA1, where plaques in human AD cases are most prevalent and where pyramidal cell bodies and synaptic boutons from perisomatic-targeting interneurons are located. These findings reveal a crucial role of GABAergic interneurons in the pathology of AD. Our study also highlights the necessity of using APP knock-in models to correctly evaluate the cellular contribution to amyloid burden since APP overexpressing transgenic models drive expression in cell types according to the promoter and integration site and not according to physiologically relevant expression mechanisms.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , GABAergic Neurons/pathology , Hippocampus/pathology , Interneurons/pathology , Plaque, Amyloid/pathology , Animals , Female , Gene Knock-In Techniques , Humans , Male , Mice
16.
PLoS Biol ; 17(10): e3000466, 2019 10.
Article in English | MEDLINE | ID: mdl-31658245

ABSTRACT

The pre- and postsynaptic membranes comprising the synaptic junction differ in protein composition. The membrane trafficking mechanisms by which neurons control surface polarization of synaptic receptors remain poorly understood. The sorting receptor Sortilin-related CNS expressed 1 (SorCS1) is a critical regulator of trafficking of neuronal receptors, including the presynaptic adhesion molecule neurexin (Nrxn), an essential synaptic organizer. Here, we show that SorCS1 maintains a balance between axonal and dendritic Nrxn surface levels in the same neuron. Newly synthesized Nrxn1α traffics to the dendritic surface, where it is endocytosed. Endosomal SorCS1 interacts with the Rab11 GTPase effector Rab11 family-interacting protein 5 (Rab11FIP5)/Rab11 interacting protein (Rip11) to facilitate the transition of internalized Nrxn1α from early to recycling endosomes and bias Nrxn1α surface polarization towards the axon. In the absence of SorCS1, Nrxn1α accumulates in early endosomes and mispolarizes to the dendritic surface, impairing presynaptic differentiation and function. Thus, SorCS1-mediated sorting in dendritic endosomes controls Nrxn axonal surface polarization required for proper synapse development and function.


Subject(s)
Calcium-Binding Proteins/genetics , Cerebral Cortex/metabolism , Neural Cell Adhesion Molecules/genetics , Neurons/metabolism , Receptors, Cell Surface/genetics , Synaptic Membranes/metabolism , Synaptic Transmission/genetics , Animals , Calcium-Binding Proteins/metabolism , Cell Polarity , Cerebral Cortex/cytology , Embryo, Mammalian , Endocytosis , Endosomes/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism , Neurons/ultrastructure , Primary Cell Culture , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Transport , Rats , Rats, Wistar , Receptors, Cell Surface/metabolism , Synaptic Membranes/ultrastructure , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
17.
Curr Opin Neurobiol ; 57: 126-133, 2019 08.
Article in English | MEDLINE | ID: mdl-30826628

ABSTRACT

Neuronal identity and connectivity are closely linked. Single-cell sequencing studies show that different neuronal cell types express distinct combinations of cell-surface proteins important for synaptic connectivity and function. Emerging evidence indicates that glia-derived cell-surface proteins play critical roles in shaping connectivity as well. These studies begin to suggest that the proteins present on presynaptic and postsynaptic membranes, glial processes, and secreted into the synaptic cleft and extracellular matrix together confer unique surface identities to different types of synaptic connections. Here, we summarize recent findings demonstrating that cell-surface proteins derived from both neurons and glia interact and cooperate to control the connectivity, architecture and function of specific synapses.


Subject(s)
Neuroglia , Membrane Proteins , Neurons , Synaptic Membranes
18.
EMBO J ; 38(6)2019 03 15.
Article in English | MEDLINE | ID: mdl-30745319

ABSTRACT

DSCAM and DSCAML1 are immunoglobulin and cell adhesion-type receptors serving important neurodevelopmental functions including control of axon growth, branching, neurite self-avoidance, and neuronal cell death. The signal transduction mechanisms or effectors of DSCAM receptors, however, remain poorly characterized. We used a human ORFeome library to perform a high-throughput screen in mammalian cells and identified novel cytoplasmic signaling effector candidates including the Down syndrome kinase Dyrk1a, STAT3, USP21, and SH2D2A. Unexpectedly, we also found that the intracellular domains (ICDs) of DSCAM and DSCAML1 specifically and directly interact with IPO5, a nuclear import protein of the importin beta family, via a conserved nuclear localization signal. The DSCAM ICD is released by γ-secretase-dependent cleavage, and both the DSCAM and DSCAML1 ICDs efficiently translocate to the nucleus. Furthermore, RNA sequencing confirms that expression of the DSCAM as well as the DSCAML1 ICDs alone can profoundly alter the expression of genes associated with neuronal differentiation and apoptosis, as well as synapse formation and function. Gain-of-function experiments using primary cortical neurons show that increasing the levels of either the DSCAM or the DSCAML1 ICD leads to an impairment of neurite growth. Strikingly, increased expression of either full-length DSCAM or the DSCAM ICD, but not the DSCAML1 ICD, significantly decreases synapse numbers in primary hippocampal neurons. Taken together, we identified a novel membrane-to-nucleus signaling mechanism by which DSCAM receptors can alter the expression of regulators of neuronal differentiation and synapse formation and function. Considering that chromosomal duplications lead to increased DSCAM expression in trisomy 21, our findings may help uncover novel mechanisms contributing to intellectual disability in Down syndrome.


Subject(s)
Active Transport, Cell Nucleus , Cell Adhesion Molecules/metabolism , Cell Nucleus/metabolism , Neurites/physiology , Synapses/physiology , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Cell Adhesion , Cell Adhesion Molecules/genetics , Cell Nucleus/genetics , HEK293 Cells , Hippocampus/metabolism , Humans , Mice , Mice, Inbred C57BL , Neurogenesis , Neurons/metabolism , Protein Domains , Protein Interaction Domains and Motifs , beta Karyopherins/genetics , beta Karyopherins/metabolism
19.
Science ; 363(6423)2019 01 11.
Article in English | MEDLINE | ID: mdl-30630900

ABSTRACT

Amyloid-ß precursor protein (APP) is central to the pathogenesis of Alzheimer's disease, yet its physiological function remains unresolved. Accumulating evidence suggests that APP has a synaptic function mediated by an unidentified receptor for secreted APP (sAPP). Here we show that the sAPP extension domain directly bound the sushi 1 domain specific to the γ-aminobutyric acid type B receptor subunit 1a (GABABR1a). sAPP-GABABR1a binding suppressed synaptic transmission and enhanced short-term facilitation in mouse hippocampal synapses via inhibition of synaptic vesicle release. A 17-amino acid peptide corresponding to the GABABR1a binding region within APP suppressed in vivo spontaneous neuronal activity in the hippocampus of anesthetized Thy1-GCaMP6s mice. Our findings identify GABABR1a as a synaptic receptor for sAPP and reveal a physiological role for sAPP in regulating GABABR1a function to modulate synaptic transmission.


Subject(s)
Amyloid beta-Protein Precursor/physiology , Neuronal Plasticity , Receptors, GABA-A/physiology , Synaptic Transmission , Amino Acid Sequence , Animals , Cells, Cultured , HEK293 Cells , Hippocampus/physiology , Humans , Male , Membrane Proteins/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology , Peptides , Protein Binding , Protein Domains , Proteomics , Synapses/physiology , Synaptic Vesicles/physiology
20.
Cell Rep ; 25(1): 130-145.e5, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30282023

ABSTRACT

Establishing synaptic contacts between neurons is paramount for nervous system function. This process involves transsynaptic interactions between a host of cell adhesion molecules that act in cooperation with the proteins of the extracellular matrix to specify unique physiological properties of individual synaptic connections. However, understanding of the molecular mechanisms that generate functional diversity in an input-specific fashion is limited. In this study, we identify that major components of the extracellular matrix proteins present in the synaptic cleft-members of the heparan sulfate proteoglycan (HSPG) family-associate with the GPR158/179 group of orphan receptors. Using the mammalian retina as a model system, we demonstrate that the HSPG member Pikachurin, released by photoreceptors, recruits a key post-synaptic signaling complex of downstream ON-bipolar neurons in coordination with the pre-synaptic dystroglycan glycoprotein complex. We further demonstrate that this transsynaptic assembly plays an essential role in synaptic transmission of photoreceptor signals.


Subject(s)
Carrier Proteins/metabolism , Dystroglycans/metabolism , Nerve Tissue Proteins/metabolism , Photoreceptor Cells/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Extracellular Matrix/metabolism , HEK293 Cells , Humans , Mice , Mice, Knockout , Protein Binding , Synapses/metabolism , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...