Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Genet ; 60(2): 183-192, 2023 02.
Article in English | MEDLINE | ID: mdl-35393335

ABSTRACT

BACKGROUND: Malformations of cortical development (MCDs) have been reported in a subset of patients with pathogenic heterozygous variants in GRIN1 or GRIN2B, genes which encode for subunits of the N-methyl-D-aspartate receptor (NMDAR). The aim of this study was to further define the phenotypic spectrum of NMDAR-related MCDs. METHODS: We report the clinical, radiological and molecular features of 7 new patients and review data on 18 previously reported individuals with NMDAR-related MCDs. Neuropathological findings for two individuals with heterozygous variants in GRIN1 are presented. We report the clinical and neuropathological features of one additional individual with homozygous pathogenic variants in GRIN1. RESULTS: Heterozygous variants in GRIN1 and GRIN2B were associated with overlapping severe clinical and imaging features, including global developmental delay, epilepsy, diffuse dysgyria, dysmorphic basal ganglia and hippocampi. Neuropathological examination in two fetuses with heterozygous GRIN1 variants suggests that proliferation as well as radial and tangential neuronal migration are impaired. In addition, we show that neuronal migration is also impaired by homozygous GRIN1 variants in an individual with microcephaly with simplified gyral pattern. CONCLUSION: These findings expand our understanding of the clinical and imaging features of the 'NMDARopathy' spectrum and contribute to our understanding of the likely underlying pathogenic mechanisms leading to MCD in these patients.


Subject(s)
Epilepsy , Microcephaly , Receptors, N-Methyl-D-Aspartate , Humans , Heterozygote , Homozygote , Nerve Tissue Proteins/genetics , Receptors, N-Methyl-D-Aspartate/genetics
2.
Am J Med Genet A ; 161A(9): 2376-84, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23873601

ABSTRACT

Mutations in FLNA (Filamin A, OMIM 300017) cause X-linked periventricular nodular heterotopia (XL-PNH). XL-PNH-associated mutations are considered lethal in hemizygous males. However, a few males with unusual mutations (including distal truncating and hypomorphic missense mutations), and somatic mosaicism have been reported to survive past infancy. Two brothers had an atypical presentation with failure to thrive and distinct facial appearance including hypertelorism. Evaluations of these brothers and their affected cousin showed systemic involvement including severe intestinal malfunction, malrotation, congenital short bowel, PNH, pyloric stenosis, wandering spleen, patent ductus arteriosus, atrial septal defect, inguinal hernia, and vesicoureteral reflux. The unanticipated finding of PNH led to FLNA testing and subsequent identification of a novel no-stop FLNA mutation (c.7941_7942delCT, p.(*2648Serext*100)). Western blotting and qRT-PCR of patients' fibroblasts showed diminished levels of protein and mRNA. This FLNA mutation, the most distal reported so far, causes in females classical XL-PNH, but in males an unusual, multi-organ phenotype, providing a unique insight into the FLNA-associated phenotypes.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Filamins/genetics , Mutation, Missense , Base Sequence , Brain/pathology , Facies , Female , Genotype , Humans , Infant , Magnetic Resonance Imaging , Male , Pedigree , Periventricular Nodular Heterotopia/diagnosis , Periventricular Nodular Heterotopia/genetics , Phenotype , Radiography , Spleen/diagnostic imaging , Spleen/pathology
3.
Am J Med Genet A ; 158A(6): 1472-6, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22585566

ABSTRACT

Mutations in the ARX gene, at Xp22.3, cause several disorders, including infantile spasms, X-linked lissencephaly with abnormal genitalia (XLAG), callosal agenesis and isolated intellectual disability. Genotype/phenotype studies suggested that polyalanine tract expansion is associated with non-malformative phenotypes, while missense and nonsense mutations cause cerebral malformations, however, patients with structural normal brain and missense mutations have been reported. We report on a male patient born with cleft lip and palate who presented with infantile spasms and hemiplegia. MRI showed agenesis of corpus callosum (ACC), an interhemispheric cyst, periventricular nodular heterotopia (PVNH), and extensive left frontal polymicrogyria (PMG). Sequencing of the ARX gene in the patient identified a six basepair insertion (c.335ins6, exon 2). The insertion leads to a two-residue expansion of the first polyalanine tract and was described previously in a family with non-syndromic X-linked mental retardation. To our knowledge, ARX mutation causing PMG and PVNH is unique, but the spasms and ACC are common in ARX mutations. Clinicians should be aware of the broad clinical range of ARX mutations, and further studies are necessary to investigate the association with PMG and PVNH and to identify possible modifying factors.


Subject(s)
Homeodomain Proteins/genetics , Malformations of Cortical Development/genetics , Mutation , Periventricular Nodular Heterotopia/genetics , Transcription Factors/genetics , Facies , Heterozygote , Humans , Infant , Karyotype , Male , Malformations of Cortical Development/diagnosis , Mutagenesis, Insertional , Neuroimaging , Periventricular Nodular Heterotopia/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL