Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Magn Reson Med ; 86(6): 3373-3381, 2021 12.
Article in English | MEDLINE | ID: mdl-34268802

ABSTRACT

PURPOSE: This study describes the development and testing of an asymmetrical xenon-129 (129 Xe) birdcage radiofrequency (RF) coil for 129 Xe lung ventilation imaging at 1.5 Tesla, which allows proton (1 H) system body coil transmit-receive functionality. METHODS: The 129 Xe RF coil is a whole-body asymmetrical elliptical birdcage constructed without an outer RF shield to enable 1 H imaging. B1+ field homogeneity and flip angle mapping of the 129 Xe birdcage RF coil and 1 H system body RF coil with the 129 Xe RF coil in situ were evaluated in the MR scanner. The functionality of the 129 Xe birdcage RF coil was demonstrated through hyperpolarized 129 Xe lung ventilation imaging with the birdcage in both transceiver configuration and transmit-only configuration when combined with an 8-channel 129 Xe receive-only RF coil array. The functionality of 1 H system body coil with the 129 Xe RF coil in situ was demonstrated by acquiring coregistered 1 H lung anatomical MR images. RESULTS: The asymmetrical birdcage produced a homogeneous B1+ field (±10%) in agreement with electromagnetic simulations. Simulations indicated an optimal detuning configuration with 4 diodes. The obtained g-factor of 1.4 for acceleration factor of R = 2 indicates optimal array configuration. Coregistered 1 H anatomical images from the system body coil along with 129 Xe lung images demonstrated concurrent and compatible arrangement of the RF coils. CONCLUSION: A large asymmetrical birdcage for homogenous B1+ transmission with high sensitivity reception for 129 Xe lung MRI at 1.5 Tesla has been demonstrated. The unshielded asymmetrical birdcage design enables 1 H structural lung MR imaging in the same exam.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Equipment Design , Lung/diagnostic imaging , Phantoms, Imaging , Protons , Thorax
2.
Magn Reson Med ; 85(4): 2327-2333, 2021 04.
Article in English | MEDLINE | ID: mdl-33058317

ABSTRACT

PURPOSE: To evaluate the impact of emerging conductor technology on RF coils. Performance and resulting image quality of thin or alternate conductors (eg, aluminum instead of copper) and thicknesses (9-600 µm) are compared in terms of SNR. METHODS: Eight prototype RF coils (15 cm × 15 cm square loops) were constructed and bench-tested to measure quality factor. The coils used 6-mm-wide conducting strips of either copper or aluminum of a few different thicknesses (copper: 17, 32, 35, 127, 600 µm; aluminum: 9, 13, 20, 127 µm) on acetate projector sheets for backing. Corresponding image SNR was measured at 0.48 tesla (20.56 MHz). RESULTS: The coils spanned a range of unloaded quality factors from 89 to 390 and a fivefold range of losses. The image SNRs were consistent with the coils' bench-measured efficiencies (0.33-0.73). Thin aluminum conductors (9 µm) led to the highest reduction in SNR (65% that of 127 µm copper). Thin copper (<32 µm) conductors lead to a much smaller decrease in SNR (approximately 10%) compared to 127 µm copper. No performance difference was observed between 127 µm thick copper and aluminum. The much thicker 600 µm copper bars only yield a 5% improvement in SNR. CONCLUSION: Even at 0.48 tesla, copper RF coil conductors much thinner than those in conventional construction can be used while maintaining SNR greater than 50% that of thick copper. These emerging coil conductor technologies enable RF coil functionality that cannot be achieved otherwise.


Subject(s)
Aluminum , Copper , Equipment Design , Magnetic Resonance Imaging , Phantoms, Imaging , Radio Waves
3.
Biomed Phys Eng Express ; 6(3): 037002, 2020 04 09.
Article in English | MEDLINE | ID: mdl-33438681

ABSTRACT

PURPOSE: The RF coils for magnetic resonance image guided radiotherapy (MRIgRT) may be constructed using thin and/or low-density conductors, along with thinner enclosure materials. This work measures the surface dose increases for lightweight conductors and enclosure materials in a magnetic field parallel to a 6 MV photon beam. METHODS: Aluminum and copper foils (9-127 µm thick), as well as samples of polyimide (17 µm) and polyester (127 µm) films are positioned atop a polystyrene phantom. A parallel plate ion chamber embedded into the top of the phantom measures the surface dose in 6 MV photon beam. Measurements (% of dose at the depth of maximum dose) are performed with and without a parallel magnetic field (0.22T at magnet center). RESULTS: In the presence of a magnetic field, the unobstructed surface dose is higher (31.9%Dmax versus 22.2%Dmax). The surface dose is found to increase linearly with thickness for thin (<25 µm) copper (0.339%Dmax µm-1) and aluminum (0.116%Dmax µm-1) foils. In the presence of a magnetic field the slope is lower (copper: 0.16%Dmax µm-1, aluminum: 0.06%Dmax µm-1). The effect of in-beam foils is reduced due to partial shielding of the surface from contaminant electrons. Copper causes a surface dose increase ≈3 times higher than aluminum of the same thickness, consistent with their relative electron density. Polyester film (127µm) increases the surface dose (to 35% Dmax with field) about as much as a gown (36% Dmax with field), while the increase with polyimide film (17µm) is less than 1% above the open field dose. CONCLUSIONS: Thin copper and aluminum conductors increase surface dose by an amount comparable to a hospital gown. Similarly, enclosure materials made of thin polyester or polyimide film increase surface dose by only a few %Dmax in excess of an unobstructed beam. Based on measurements in this study, in-beam, surface RF coils are feasible for MRIgRT systems.


Subject(s)
Aluminum/chemistry , Copper/chemistry , Magnetic Fields , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Electrons , Monte Carlo Method , Particle Accelerators , Phantoms, Imaging , Radiation , Radiation Dosage , Radio Waves , Radiotherapy Dosage , Radiotherapy, Image-Guided
4.
Magn Reson Imaging ; 48: 89-95, 2018 05.
Article in English | MEDLINE | ID: mdl-29278763

ABSTRACT

Placing dielectric pads adjacent to the imaging region is an effective method to increase the signal locally and also increase the radio frequency magnetic field homogeneity in magnetic resonance imaging. The use of local high permittivity pads is becoming more common, and this work focuses on the effect of larger dielectric pads on the transmit/receive performance of an array (e.g., coupling, efficiency and safety) having 8 channels, used to image a cylindrical phantom at 4.7T (200MHz). We investigate the effects of a dielectric liner surrounding the whole volume of interest both with and without an air gap. The simulations reveal that high permittivities are not recommended because they substantially degrade the longitudinal homogeneity, resulting in hot spots of specific absorption rate at the driven end of the array. Furthermore, high permittivities lead to dielectric resonances in the liner at frequencies close to the Larmor frequency, potentially degrading the performance of the array. Indeed, simulations and measurements confirm that a compromise must be made between improvements in field homogeneity and transmit performance, and that an optimal permittivity exists which is much lower than those commonly used in the literature. The optimal permittivity achieves minimal coupling (<-23dB) between array elements, exhibits an intrinsic electromagnetic impedance equal to the geometric mean of those of the coil former and phantom and can be realized with inexpensive materials. For this permittivity the performance with an air gap of thickness equal to that of the liner is equivalent to that without the air gap.


Subject(s)
Image Enhancement/methods , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Equipment Design , Magnetic Fields , Radio Waves
5.
Magn Reson Imaging ; 37: 252-259, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27816746

ABSTRACT

In typical MRI applications the dominant noise sources in the received signal are the sample, the coil loop and the preamplifier. We hypothesize that in some cases (e.g. for very small receiver coils) the matching network noise has to be considered explicitly. Considering the difficulties of direct experimental determinations of the noise factor of matching networks with sufficient accuracy, it is helpful to estimate the noise factor by calculation. A useful formula of the coil matching network is obtained by separating commonly used coil matching network into different stages and calculating their noise factor analytically by a combination of the noise from these stages. A useful formula of the coil matching network is obtained. ADS simulations are performed to verify the theoretical predictions. Thereafter carefully-designed proof-of-concept phantom experiments are carried out to qualitatively confirm the predicted SNR behavior. The matching network noise behavior is further theoretically investigated for a variety of scenarios. It is found that in practice the coil matching network noise can be improved by adjusting the coil open port resonant frequency.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Equipment Design , Noise , Phantoms, Imaging , Signal-To-Noise Ratio
6.
Magn Reson Med ; 77(6): 2186-2202, 2017 06.
Article in English | MEDLINE | ID: mdl-27416792

ABSTRACT

PURPOSE: High-bandwidth bipolar multiecho gradient echo sequences are increasingly popular in structural brain imaging because of reduced water-fat shifts, lower susceptibility effects, and improved signal-to-noise ratio (SNR) efficiency. In this study, we investigated the performance of three three-dimensional multiecho sequences (MPRAGE, MP2RAGE, and FLASH) with scan times < 9 min and 1-mm isotropic resolution against their single-echo, low-bandwidth counterparts at 3T. We also compared the performance of multiparameter mapping (PD, T1 , and T2*) with bipolar multiecho MP2RAGE versus the variable flip angle technique with multiecho FLASH (VFA-FLASH). METHODS: Multiecho sequences were optimized to yield equivalent contrast and improved SNR compared with their single-echo counterparts. Theoretical SNR gains were verified with measurements in a multilayered phantom. Robust image processing pipelines extracted PD, T1 , and T2* maps from MP2RAGE or VFA-FLASH, and the corresponding SNR was measured with varying SENSE accelerations (R = 1-5) and number of echoes (N = 1-12). All sequences were tested on four healthy volunteers. RESULTS: Multiecho sequences achieved SNR gains of 1.3-1.6 over single-echo sequences. MP2RAGE yielded comparable T1 -to-noise ratio to VFA-FLASH, but significantly lower SNR (<50%) in PD and T2* maps. Measured SNR gains agreed with the theoretical predictions for SENSE accelerations ≤3. CONCLUSION: Multiecho sequences achieve higher SNR efficiency over conventional single-echo sequences, despite three-fold higher sampling bandwidths. VFA-FLASH surpasses MP2RAGE in its ability to map three parameters with high SNR and 1-mm isotropic resolution in a clinically relevant scan time (∼8:30 min), whereas MP2RAGE yields lower intersubject variability in T1 . Magn Reson Med 77:2186-2202, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Algorithms , Brain/anatomy & histology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Signal Processing, Computer-Assisted , Humans , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Signal-To-Noise Ratio
7.
NMR Biomed ; 29(10): 1464-76, 2016 10.
Article in English | MEDLINE | ID: mdl-27580498

ABSTRACT

MRS enables insight into the chemical composition of central nervous system tissue. However, technical challenges degrade the data quality when applied to the human spinal cord. Therefore, to date detection of only the most prominent metabolite resonances has been reported in the healthy human spinal cord. The aim of this investigation is to provide an extended metabolic profile including neurotransmitters and antioxidants in addition to metabolites involved in the energy and membrane metabolism of the human cervical spinal cord in vivo. To achieve this, data quality was improved by using a custom-made, cervical detector array together with constructive averaging of a high number of echo signals, which is enabled by the metabolite cycling technique at 3T. In addition, the improved spinal cord spectra were extensively cross-validated, in vivo, post-mortem in situ and ex vivo. Reliable identification of up to nine metabolites was achieved in group analyses for the first time. Distinct features of the spinal cord neurochemical profile, in comparison with the brain neurotransmission system, include decreased concentrations of the sum of glutamate and glutamate and increased concentrations of aspartate, γ-amino-butyric acid, scyllo-inositol and the sum of myo-inositol and glycine.


Subject(s)
Algorithms , Antioxidants/metabolism , Cervical Cord/metabolism , Magnetic Resonance Spectroscopy/instrumentation , Magnetic Resonance Spectroscopy/methods , Neurotransmitter Agents/metabolism , Adult , Cervical Cord/anatomy & histology , Equipment Design , Equipment Failure Analysis , Female , Humans , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Male , Molecular Imaging/methods , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted/instrumentation
8.
Magn Reson Med ; 76(6): 1790-1804, 2016 12.
Article in English | MEDLINE | ID: mdl-26714609

ABSTRACT

PURPOSE: DESPOT2 is a single-component T2 mapping technique based on bSSFP imaging. It has seen limited application because of banding artifacts and magnetization transfer (MT) effects. In this work, acquisitions are optimized to minimize MT effects, while exact and approximate analytical equations enable automatic correction of banding artifacts within the T2 maps in mere seconds. THEORY AND METHODS: The technique was verified on an agar phantom at 3 tesla. The T2 resulting from four different data combination techniques was compared with the T2 from CPMG. Two comparable DESPOT2 scan protocols (short vs. long TR/TRF ) designed to minimize MT effects, were tested both in the phantom and in vivo. A third protocol was tested in the brain of 8 volunteers and analytical correction schemes were compared with DESPOT2-FM. RESULTS: The T2 measurements in agar agree with CPMG within ∼7% and in vivo results agree with values reported in the literature. The approximate analytical solutions provide increased robustness to hardware imperfections and higher T2 -to-noise ratio than the exact solutions. CONCLUSION: New analytical solutions enable fast and accurate whole-brain T2 mapping from previously measured T1 and B1 maps, and bSSFP images with at least two phase offsets and two flip angles (=4 datasets, 8 min scan). Magn Reson Med 76:1790-1804, 2016. © 2015 International Society for Magnetic Resonance in Medicine.


Subject(s)
Algorithms , Artifacts , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Signal Processing, Computer-Assisted , Adult , Female , Humans , Male , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Young Adult
9.
NMR Biomed ; 28(2): 141-53, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25388793

ABSTRACT

Composite MRI arrays consist of triplets where two orthogonal upright loops are placed over the same imaging area as a standard surface coil. The optimal height of the upright coils is approximately half the width for the 7 cm coils used in this work. Resistive and magnetic coupling is shown to be negligible within each coil triplet. Experimental evaluation of imaging performance was carried out on a Philips 3 T Achieva scanner using an eight-coil composite array consisting of three surface coils and five upright loops, as well as an array of eight surface coils for comparison. The composite array offers lower overall coupling than the traditional array. The sensitivities of upright coils are complementary to those of the surface coils and therefore provide SNR gains in regions where surface coil sensitivity is low, and additional spatial information for improved parallel imaging performance. Near the surface of the phantom the eight-channel surface coil array provides higher overall SNR than the composite array, but this advantage disappears beyond a depth of approximately one coil diameter, where it is typically more challenging to improve SNR. Furthermore, parallel imaging performance is better with the composite array compared with the surface coil array, especially at high accelerations and in locations deep in the phantom. Composite arrays offer an attractive means of improving imaging performance and channel density without reducing the size, and therefore the loading regime, of surface coil elements. Additional advantages of composite arrays include minimal SNR loss using root-sum-of-squares combination compared with optimal, and the ability to switch from high to low channel density by merely selecting only the surface elements, unlike surface coil arrays, which require additional hardware.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Signal-To-Noise Ratio , Computer Simulation , Electricity , Phantoms, Imaging , Reproducibility of Results
10.
Magn Reson Med ; 74(5): 1470-81, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25393911

ABSTRACT

PURPOSE: Detectors such as birdcage coils often consist of networks of coupled resonant circuits that must produce specified magnetic field distributions. In many cases, such as quadrature asymmetric insert body coils, calculating the capacitance values required to achieve specified currents and frequencies simultaneously is a challenging task that previously had only approximate or computationally inefficient solutions. THEORY AND METHODS: A general algebraic method was developed that is applicable to linear networks having planar representations such as birdcage coils, transverse electromagnetic (TEM) coils, and numerous variants of ladder networks. Unlike previous iterative or approximate methods, the algebraic method is computationally efficient and determines current distribution and resonant frequency using a single matrix inversion. The method was demonstrated by specifying irregular current distributions on a highly elliptical birdcage coil at 3 Tesla. RESULTS: Measurements of the modal frequency spectrum and transmit field distribution of the two specified modes agrees with the theory. Accuracy is limited in practice only by how accurately the matrix of self and mutual inductances of the network is known. CONCLUSION: The algebraic method overcomes the inability of the existing inductance equalization method to account for all elements of the inductance matrix and the inability to accommodate modal currents that are not (co)sinusoidal.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Electromagnetic Fields , Equipment Design , Phantoms, Imaging
11.
NMR Biomed ; 27(8): 926-38, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24890880

ABSTRACT

A noise figure and noise parameter measurement system was developed that consists of a combination spectrum and network analyzer, preamplifier, programmable power supply, noise source, tuning board, and desktop computer. The system uses the Y-factor method for noise figure calculation and allows calibrations to correct for a decrease in excess noise ratio between the noise source and device under test, second stage (system) noise, ambient temperature variations, and available gain of the device under test. Noise parameters are extracted by performing noise figure measurements at several source impedance values obtained by adjusting an electronically controlled tuner. Results for several amplifiers at 128 MHz and 200 MHz agree with independent measurements and with the corresponding datasheets. With some modifications, the system was also used to characterize the noise figure of MRI preamplifiers in strong static magnetic fields up to 9.4 T. In most amplifiers tested the gain was found to be reduced by the magnetic field, while the noise figure increased. These changes are detrimental to signal quality (SNR) and are dependent on the electron mobility and design of the amplifier's semiconductor devices. Consequently, gallium arsenide (GaAs) field-effect transistors are most sensitive to magnetic fields due to their high electron mobility and long, narrow channel, while silicon-germanium (SiGe) bipolar transistor amplifiers are largely immune due to their very thin base.


Subject(s)
Amplifiers, Electronic , Artifacts , Automation , Magnetic Fields , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , User-Computer Interface
12.
NMR Biomed ; 26(5): 533-41, 2013 May.
Article in English | MEDLINE | ID: mdl-23401299

ABSTRACT

Proton-decoupled, (13) C nuclear MRS experiments require a RF coil that operates at the Larmor frequencies of both (13) C and (1) H. In this work, we designed, built and tested a single-unit, dual-tuned coil based on a half-birdcage open coil design. It was constructed as a low-pass network with a resonant trap in series with each leg. Traps are tuned in alternate legs such that the two resonant modes arise from currents on alternate legs. The coil performance was compared with that of a dual-tuned coil consisting of two proton surface coils operating in quadrature and a single surface coil for (13) C transmission and reception. The half-birdcage coil was shown to produce a more homogeneous RF field at each frequency and was more sensitive to a (13) C signal arising from regions further from the coil surface. The applicability of the coil in vivo was demonstrated by acquiring a proton decoupled, natural abundance (13) C glycogen signal from the calf of a normal volunteer.


Subject(s)
Magnetic Resonance Spectroscopy/instrumentation , Carbon Isotopes , Magnetic Resonance Spectroscopy/methods
13.
Magn Reson Med ; 62(1): 269-76, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19449383

ABSTRACT

Magnetic field monitoring with NMR probes has recently been introduced as a means of measuring the actual spatiotemporal magnetic field evolution during individual MR scans. Receive-only NMR probes as used thus far for this purpose impose significant practical limitations due to radiofrequency (RF) interference with the actual MR experiment. In this work these limitations are overcome with a transmit/receive (T/R) monitoring system based on RF-shielded NMR probes. The proposed system is largely autonomous and protected against RF contamination. As a consequence the field probes can be positioned freely and permit monitoring imaging procedures of arbitrary geometry and angulation. The T/R approach is also exploited to simplify probe manufacturing and remove constraints on material choices. Probe miniaturization permits monitoring imaging scans with nominal resolutions on the order of 400 microm. The added capabilities of the new probes and system are demonstrated by first in vivo results, obtained with monitored gradient-echo and spin-echo echo-planar imaging (EPI) scans.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Radiometry/instrumentation , Transducers , Electromagnetic Fields , Equipment Design , Equipment Failure Analysis , Magnetic Resonance Imaging/methods , Radiometry/methods
14.
Nature ; 457(7232): 994-8, 2009 Feb 19.
Article in English | MEDLINE | ID: mdl-19225521

ABSTRACT

Nuclear magnetic resonance (NMR) is one of the most versatile experimental methods in chemistry, physics and biology, providing insight into the structure and dynamics of matter at the molecular scale. Its imaging variant-magnetic resonance imaging (MRI)-is widely used to examine the anatomy, physiology and metabolism of the human body. NMR signal detection is traditionally based on Faraday induction in one or multiple radio-frequency resonators that are brought into close proximity with the sample. Alternative principles involving structured-material flux guides, superconducting quantum interference devices, atomic magnetometers, Hall probes or magnetoresistive elements have been explored. However, a common feature of all NMR implementations until now is that they rely on close coupling between the detector and the object under investigation. Here we show that NMR can also be excited and detected by long-range interaction, relying on travelling radio-frequency waves sent and received by an antenna. One benefit of this approach is more uniform coverage of samples that are larger than the wavelength of the NMR signal-an important current issue in MRI of humans at very high magnetic fields. By allowing a significant distance between the probe and the sample, travelling-wave interaction also introduces new possibilities in the design of NMR experiments and systems.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Humans , Magnetic Resonance Spectroscopy/instrumentation , Phantoms, Imaging
15.
Magn Reson Med ; 60(2): 431-8, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18666111

ABSTRACT

An asymmetric quadrature birdcage body coil for hyperpolarized (HP) (3)He lung imaging at 1.5T is presented. The coil is designed to rest on top of the patient support and be used as a temporary insert in a clinical system. A two-part construction facilitates patient access and the asymmetric design makes maximal use of available bore space to ensure comfort. Highly homogeneous, circularly polarized RF magnetic fields are produced at 48.5 MHz using a conformal mapping method for the geometrical design, combined with an algebraic method to calculate the individual capacitance values on the birdcage coil's ladder network. Efficiency and isolation from the system's proton body coil are ensured by an integrated RF screen. The design methodology is readily applicable to other field strengths or nuclei. Improvements over existing (3)He coils were found in terms of sensitivity and transmit field homogeneity, an important feature in HP MRI.


Subject(s)
Computer-Aided Design , Helium , Image Enhancement/instrumentation , Lung/anatomy & histology , Magnetic Resonance Imaging/instrumentation , Magnetics/instrumentation , Transducers , Contrast Media , Equipment Design , Equipment Failure Analysis , Humans , Image Enhancement/methods , Isotopes , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
16.
Magn Reson Med ; 60(1): 187-97, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18581361

ABSTRACT

MR experiments frequently rely on signal encoding by the application of magnetic fields that vary in both space and time. The accurate interpretation of the resulting signals often requires knowledge of the exact spatiotemporal field evolution during the experiment. To better fulfill this need, a new approach is presented that enables measuring the field evolution concurrently with any MR sequence. Miniature NMR probes are used to monitor the MR phase evolution around the object under investigation. Based on these data, a global phase model is calculated that can then be used as a basis for processing the actual image or spectroscopic data. The new method is demonstrated by MRI of a phantom, using spin-warp, spiral, and EPI trajectories. Throughout, the monitoring results enabled highly accurate image reconstruction, even in the presence of massive gradient imperfections.


Subject(s)
Magnetic Resonance Imaging/methods , Magnetics , Calibration , Models, Theoretical , Phantoms, Imaging
17.
Magn Reson Med ; 60(1): 176-86, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18581363

ABSTRACT

High-resolution magnetic field probes based on pulsed liquid-state NMR are presented. Static field measurements with an error of 10 nanotesla or less at 3 tesla are readily obtained in 100 ms. The further ability to measure dynamic magnetic fields results from using small ( approximately 1 microL) droplets of MR-active liquid surrounded by susceptibility-matched materials. The consequent high field homogeneity allows free induction decay signals lasting 100 ms or more to be readily achieved. The small droplet dimensions allow the magnetic field to be measured even in the presence of large gradients. Highly sensitive detection yields sufficient SNR to follow the relevant field evolution without signal averaging and at bandwidths up to hundreds of kHz. Transient, nonreproducible effects and drifts are thus readily monitored. The typical application of k-space trajectory mapping has been demonstrated. Potential further applications include characterization, tuning, and maintenance of gradient systems as well as the mapping of the static field distribution of MRI magnets. Connection of the probes to a standard MR spectrometer is similar to that used for imaging coils.


Subject(s)
Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Magnetics
18.
NMR Biomed ; 21(6): 644-54, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18157799

ABSTRACT

We describe a modular and hence flexible system for connecting MR surface coils to create a receiver array. Up to 16 individual coils of different size and shape depending on the application are plugged into a connector box that houses the control electronics. Preamplification, matching and detuning circuitry are housed on a circuit board directly attached to each coil loop. Electrical adjustments for tuning or decoupling for each coil configuration are not needed thanks to effective preamplifier decoupling provided through a Pi matching network. Radio-frequency safety and electrically stable cabling are ensured by multiple radio-frequency traps. Array modules for 1.5 and 3 T have been simulated, constructed, tested, and used for imaging experiments.


Subject(s)
Computer-Aided Design , Electronics/instrumentation , Magnetic Resonance Imaging/instrumentation , Magnetics/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis
19.
J Magn Reson ; 185(1): 164-72, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17174581

ABSTRACT

The presence and diagnosis of radiation damping could have major implications in NMR experiments with hyperpolarised gases, where accurate knowledge of the flip angle is imperative. In this work radiation damping was observed and investigated in a low-pass birdcage resonator (Q=250) with samples of hyperpolarised 3He at 1.5 T. With an initially highly polarised (P=38%) sample of 3He in a spherical cell, the observed FID had a distorted line shape with a spectral line width that was three times that of the same sample in a virtually depolarised state (1 Hz line width for P<1%). Moreover a linear relation between the sample's magnetisation (M0) and the line width of the spectrum was observed which is indicative of radiation damping. With highly polarised samples, significant radiation damping was observed and the effect was a lower than expected rate of depletion of M0 in RF flip angle calibration experiments, which led to significant underestimate of the RF flip angle. To our knowledge this is the first report of radiation damping in a birdcage resonator with samples hyperpolarised or otherwise. Experimental observation of radiation damping could be used as means of measuring coil efficiency as an alternative to the geometrical filling factor (eta) the definition of which is open to question for a birdcage resonator. Estimates of the birdcage filling factor from the measured damping time constants (eta(RD)=0.4%) are compared to those derived from electromagnetic energy ratios (eta(E)=1.6%) and metallic sphere frequency shift methods (eta(fs)=1.4%). These figures are much lower than the simple volume geometrical upper limit of eta(v)=3.7% derived from the ratio of cell volume to total coil volume (shield included). The physical explanation for this shortfall is that the bulk of the magnetic energy stored in the birdcage is spatially distributed predominantly between the rungs and the shield, and not in the coil centre where the sample is placed and where the B1+ field has its highest spatial homogeneity.


Subject(s)
Artifacts , Gases/chemistry , Helium/chemistry , Transducers , Equipment Design , Equipment Failure Analysis , Isotopes/chemistry , Radiation Dosage , Radiometry/methods , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
20.
J Magn Reson ; 183(1): 13-24, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16890464

ABSTRACT

The magnetization response of hyperpolarized 3He gas to a steady-state free precession (SSFP) sequence was simulated using matrix product operators. The simulations included the effects of flip angle (alpha), sequence timings, resonant frequency, gas diffusion coefficient, imaging gradients, T1 and T2. Experiments performed at 1.5 T, on gas phantoms and with healthy human subjects, confirm the predicted theory, and indicate increased SNR with SSFP through use of higher flip angles when compared to optimized spoiled gradient echo (SPGR). Simulations and experiments show some compromise to the SNR and some point spread function broadening at high alpha due to the incomplete refocusing of transverse magnetization, caused by diffusion dephasing from the readout gradient. Mixing of gas polarization levels by diffusion between slices is also identified as a source of signal loss in SSFP at higher alpha through incomplete refocusing. Nevertheless, in the sample experiments, a SSFP sequence with an optimized flip angle of alpha=20 degrees, and 128 sequential phase encoding views, showed a higher SNR when compared to SPGR (alpha=7.2 degrees) with the same bandwidth. Some of the gas sample experiments demonstrated a transient signal response that deviates from theory in the initial phase. This was identified as being caused by radiation damping interactions between the large initial transverse magnetization and the high quality factor (Q=250) birdcage resonator. In 3He NMR experiments, performed without imaging gradients, diffusion dephasing can be mitigated, and the effective T2 is relatively long (1 s). Under these circumstances the SSFP sequence behaves like a CPMG sequence with sinalpha/2 weighting of SNR. Experiments and simulations were also performed to characterize the off-resonance behaviour of the SSFP HP 3He signal. Characteristic banding artifacts due to off-resonance harmonic beating were observed in some of the in vivo SSFP images, for instance in axial slices close to the diaphragm where B0 inhomogeneity is highest. Despite these artifacts, a higher SNR was observed with SSFP in vivo when compared to the SPGR sequence. The trends predicted by theory of increasing SSFP SNR with increasing flip angle were observed in the range alpha=10-20 degrees without compromise to image quality through blurring caused by excessive k-space filtering.


Subject(s)
Contrast Media/chemistry , Helium/chemistry , Lung/anatomy & histology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Models, Biological , Computer Simulation , Helium/pharmacokinetics , Humans , Lung/metabolism , Models, Chemical , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...