Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 19(7): e1011477, 2023 07.
Article in English | MEDLINE | ID: mdl-37410772

ABSTRACT

SUMO modifications regulate the function of many proteins and are important in controlling herpesvirus infections. We performed a site-specific proteomic analysis of SUMO1- and SUMO2-modified proteins in Epstein-Barr virus (EBV) latent and lytic infection to identify proteins that change in SUMO modification status in response to EBV reactivation. Major changes were identified in all three components of the TRIM24/TRIM28/TRIM33 complex, with TRIM24 being rapidly degraded and TRIM33 being phosphorylated and SUMOylated in response to EBV lytic infection. Further experiments revealed TRIM24 and TRIM33 repress expression of the EBV BZLF1 lytic switch gene, suppressing EBV reactivation. However, BZLF1 was shown to interact with TRIM24 and TRIM33, resulting in disruption of TRIM24/TRIM28/TRIM33 complexes, degradation of TRIM24 and modification followed by degradation of TRIM33. Therefore, we have identified TRIM24 and TRIM33 as cellular antiviral defence factors against EBV lytic infection and established the mechanism by which BZLF1 disables this defence.


Subject(s)
Epstein-Barr Virus Infections , Humans , Herpesvirus 4, Human/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Proteomics , Virus Activation , Virus Latency , Transcription Factors/metabolism , Carrier Proteins
2.
PLoS Pathog ; 18(1): e1010235, 2022 01.
Article in English | MEDLINE | ID: mdl-35007297

ABSTRACT

The Epstein-Barr virus (EBV) BGLF2 protein is a tegument protein with multiple effects on the cellular environment, including induction of SUMOylation of cellular proteins. Using affinity-purification coupled to mass-spectrometry, we identified the miRNA-Induced Silencing Complex (RISC), essential for miRNA function, as a top interactor of BGLF2. We confirmed BGLF2 interaction with the Ago2 and TNRC6 components of RISC in multiple cell lines and their co-localization in cytoplasmic bodies that also contain the stress granule marker G3BP1. In addition, BGLF2 expression led to the loss of processing bodies in multiple cell types, suggesting disruption of RISC function in mRNA regulation. Consistent with this observation, BGLF2 disrupted Ago2 association with multiple miRNAs. Using let-7 miRNAs as a model, we tested the hypothesis that BGLF2 interfered with the function of RISC in miRNA-mediated mRNA silencing. Using multiple reporter constructs with 3'UTRs containing let-7a regulated sites, we showed that BGLF2 inhibited let-7a miRNA activity dependent on these 3'UTRs, including those from SUMO transcripts which are known to be regulated by let-7 miRNAs. In keeping with these results, we showed that BGLF2 increased the cellular level of unconjugated SUMO proteins without affecting the level of SUMO transcripts. Such an increase in free SUMO is known to drive SUMOylation and would account for the effect of BGLF2 in inducing SUMOylation. We further showed that BGLF2 expression inhibited the loading of let-7 miRNAs into Ago2 proteins, and conversely, that lytic infection with EBV lacking BGLF2 resulted in increased interaction of let-7a and SUMO transcripts with Ago2, relative to WT EBV infection. Therefore, we have identified a novel role for BGLF2 as a miRNA regulator and shown that one outcome of this activity is the dysregulation of SUMO transcripts that leads to increased levels of free SUMO proteins and SUMOylation.


Subject(s)
Carboxypeptidases/metabolism , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/metabolism , Host-Parasite Interactions/physiology , MicroRNAs/metabolism , Viral Fusion Proteins/metabolism , Cell Line , Epstein-Barr Virus Infections/metabolism , Humans , Sumoylation
3.
Cell Mol Life Sci ; 78(8): 4053-4065, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33834259

ABSTRACT

Class I PI3K are heterodimers composed of a p85 regulatory subunit and a p110 catalytic subunit involved in multiple cellular functions. Recently, the catalytic subunit p110ß has emerged as a class I PI3K isoform playing a major role in tumorigenesis. Understanding its regulation is crucial for the control of the PI3K pathway in p110ß-driven cancers. Here we sought to evaluate the putative regulation of p110ß by SUMO. Our data show that p110ß can be modified by SUMO1 and SUMO2 in vitro, in transfected cells and under completely endogenous conditions, supporting the physiological relevance of p110ß SUMOylation. We identify lysine residue 952, located at the activation loop of p110ß, as essential for SUMOylation. SUMOylation of p110ß stabilizes the protein increasing its activation of AKT which promotes cell growth and oncogenic transformation. Finally, we show that the regulatory subunit p85ß counteracts the conjugation of SUMO to p110ß. In summary, our data reveal that SUMO is a novel p110ß interacting partner with a positive effect on the activation of the PI3K pathway.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/metabolism , Sumoylation , Animals , Catalytic Domain , Class Ia Phosphatidylinositol 3-Kinase/chemistry , Enzyme Activation , Enzyme Stability , HEK293 Cells , Humans , Mice , NIH 3T3 Cells , PC-3 Cells , Signal Transduction
4.
J Virol ; 93(22)2019 11 15.
Article in English | MEDLINE | ID: mdl-31462557

ABSTRACT

The BMRF1 protein of Epstein-Barr virus (EBV) has multiple roles in viral lytic infection, including serving as the DNA polymerase processivity factor, activating transcription from several EBV promoters and inhibiting the host DNA damage response to double-stranded DNA breaks (DSBs). Using affinity purification coupled to mass spectrometry, we identified the nucleosome remodeling and deacetylation (NuRD) complex as the top interactor of BMRF1. We further found that NuRD components localize with BMRF1 at viral replication compartments and that this interaction occurs through the BMRF1 C-terminal region previously shown to mediate transcriptional activation. We identified an RBBP4 binding motif within this region that can interact with both RBBP4 and MTA2 components of the NuRD complex and showed that point mutation of this motif abrogates NuRD binding as well as the ability of BMRF1 to activate transcription from the BDLF3 and BLLF1 EBV promoters. In addition to its role in transcriptional regulation, NuRD has been shown to contribute to DSB signaling in enabling recruitment of RNF168 ubiquitin ligase and subsequent ubiquitylation at the break. We showed that BMRF1 inhibited RNF168 recruitment and ubiquitylation at DSBs and that this inhibition was at least partly relieved by loss of the NuRD interaction. The results reveal a mechanism by which BMRF1 activates transcription and inhibits DSB signaling and a novel role for NuRD in transcriptional activation in EBV.IMPORTANCE The Epstein-Barr virus (EBV) BMRF1 protein is critical for EBV infection, playing key roles in viral genome replication, activation of EBV genes, and inhibition of host DNA damage responses (DDRs). Here we show that BMRF1 targets the cellular nucleosome remodeling and deacetylation (NuRD) complex, using a motif in the BMRF1 transcriptional activation sequence. Mutation of this motif disrupts the ability of BMRF1 to activate transcription and interfere with DDRs, showing the importance of the NuRD interaction for BMRF1 functions. BMRF1 was shown to act at the same step in the DDR as NuRD, suggesting that it interferes with NuRD function.


Subject(s)
Antigens, Viral/metabolism , DNA Damage , Herpesvirus 4, Human/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Antigens, Viral/genetics , Cell Line, Tumor , DNA Replication , DNA, Viral/genetics , DNA-Binding Proteins/metabolism , Epstein-Barr Virus Infections/virology , HEK293 Cells , HeLa Cells , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Humans , Membrane Glycoproteins/metabolism , Promoter Regions, Genetic , Signal Transduction , Trans-Activators/metabolism , Transcriptional Activation , Viral Proteins/metabolism , Virus Replication
5.
FASEB J ; 33(1): 643-651, 2019 01.
Article in English | MEDLINE | ID: mdl-30024791

ABSTRACT

The ribosomal protein L11 (RPL11) integrates different types of stress into a p53-mediated response. Here, we analyzed the impact of the ubiquitin-like protein SUMO on the RPL11-mouse double-minute 2 homolog-p53 signaling. We show that small ubiquitin-related modifier (SUMO)1 and SUMO2 covalently modify RPL11. We find that SUMO negatively modulates the conjugation of the ubiquitin-like protein neural precursor cell-expressed developmentally downregulated 8 (NEDD8) to RPL11 and promotes the translocation of the RP outside of the nucleoli. Moreover, the SUMO-conjugating enzyme, Ubc9, is required for RPL11-mediated activation of p53. SUMOylation of RPL11 is triggered by ribosomal stress, as well as by alternate reading frame protein upregulation. Collectively, our data identify SUMO protein conjugation to RPL11 as a new regulator of the p53-mediated cellular response to different types of stress and reveal a previously unknown SUMO-NEDD8 interplay.-El Motiam, A., Vidal, S., de la Cruz-Herrera, C. F., Da Silva-Álvarez, S., Baz-Martínez, M., Seoane, R., Vidal, A., Rodríguez, M. S., Xirodimas, D. P., Carvalho, A. S., Beck, H. C., Matthiesen, R., Collado, M., Rivas, C. Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function.


Subject(s)
NEDD8 Protein/metabolism , Neoplasms/pathology , Protein Processing, Post-Translational , Ribosomal Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Ubiquitins/metabolism , HEK293 Cells , Humans , Neoplasms/metabolism , Tumor Cells, Cultured
6.
PLoS Pathog ; 14(7): e1007176, 2018 07.
Article in English | MEDLINE | ID: mdl-29979787

ABSTRACT

Many cellular processes pertinent for viral infection are regulated by the addition of small ubiquitin-like modifiers (SUMO) to key regulatory proteins, making SUMOylation an important mechanism by which viruses can commandeer cellular pathways. Epstein-Barr virus (EBV) is a master at manipulating of cellular processes, which enables life-long infection but can also lead to the induction of a variety of EBV-associated cancers. To identify new mechanisms by which EBV proteins alter cells, we screened a library of 51 EBV proteins for global effects on cellular SUMO1 and SUMO2 modifications (SUMOylation), identifying several proteins not previously known to manipulate this pathway. One EBV protein (BRLF1) globally induced the loss of SUMOylated proteins, in a proteasome-dependent manner, as well as the loss of promeylocytic leukemia nuclear bodies. However, unlike its homologue (Rta) in Kaposi's sarcoma associated herpesvirus, it did not appear to have ubiquitin ligase activity. In addition we identified the EBV SM protein as globally upregulating SUMOylation and showed that this activity was conserved in its homologues in herpes simplex virus 1 (HSV1 UL54/ICP27) and cytomegalovirus (CMV UL69). All three viral homologues were shown to bind SUMO and Ubc9 and to have E3 SUMO ligase activity in a purified system. These are the first SUMO E3 ligases discovered for EBV, HSV1 and CMV. Interestingly the homologues had different specificities for SUMO1 and SUMO2, with SM and UL69 preferentially binding SUMO1 and inducing SUMO1 modifications, and UL54 preferentially binding SUMO2 and inducing SUMO2 modifications. The results provide new insights into the function of this family of conserved herpesvirus proteins, and the conservation of this SUMO E3 ligase activity across diverse herpesviruses suggests the importance of this activity for herpesvirus infections.


Subject(s)
Cytomegalovirus/enzymology , Herpesvirus 1, Human/enzymology , Herpesvirus 4, Human/enzymology , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/metabolism , Cell Line , Genome-Wide Association Study , Humans , Sumoylation
7.
Sci Rep ; 7(1): 14055, 2017 10 25.
Article in English | MEDLINE | ID: mdl-29070839

ABSTRACT

Activated dsRNA-dependent serine/threonine kinase PKR phosphorylates the alpha subunit of eukaryotic initiation factor 2 (eIF2α), resulting in a shut-off of general translation, induction of apoptosis, and inhibition of virus replication. PKR can be activated by binding to dsRNA or cellular proteins such as PACT/RAX, or by its conjugation to ISG15 or SUMO. Here, we demonstrate that PKR also interacts with SUMO in a non-covalent manner. We identify the phosphorylable tyrosine residue 162 in PKR (Y162) as a modulator of the PKR-SUMO non-covalent interaction as well as of the PKR SUMOylation. Finally, we show that the efficient SUMO-mediated eIF2α phosphorylation and inhibition of protein synthesis induced by PKR in response to dsRNA depend on this residue. In summary, our data identify a new mechanism of regulation of PKR activity and reinforce the relevance of both, tyrosine phosphorylation and SUMO interaction in controlling the activity of PKR.


Subject(s)
RNA, Double-Stranded/metabolism , SUMO-1 Protein/metabolism , Tyrosine/metabolism , eIF-2 Kinase/physiology , Animals , Apoptosis , Enzyme Activation , HEK293 Cells , Humans , Mice , Mice, Knockout , Phosphorylation , Protein Binding , Sumoylation , eIF-2 Kinase/metabolism
8.
Sci Rep ; 6: 37258, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27849047

ABSTRACT

The matrix protein of Ebola virus (EBOV) VP40 regulates viral budding, nucleocapsid recruitment, virus structure and stability, viral genome replication and transcription, and has an intrinsic ability to form virus-like particles. The elucidation of the regulation of VP40 functions is essential to identify mechanisms to inhibit viral replication and spread. Post-translational modifications of proteins with ubiquitin-like family members are common mechanisms for the regulation of host and virus multifunctional proteins. Thus far, no SUMOylation of VP40 has been described. Here we demonstrate that VP40 is modified by SUMO and that SUMO is included into the viral like particles (VLPs). We demonstrate that lysine residue 326 in VP40 is involved in SUMOylation, and by analyzing a mutant in this residue we show that SUMO conjugation regulates the stability of VP40 and the incorporation of SUMO into the VLPs. Our study indicates for the first time, to the best of our knowledge, that EBOV hijacks the cellular SUMOylation system in order to modify its own proteins. Modulation of the VP40-SUMO interaction may represent a novel target for the therapy of Ebola virus infection.


Subject(s)
Ebolavirus/metabolism , Lysine/metabolism , Nucleoproteins/metabolism , Sumoylation , Viral Core Proteins/metabolism , Animals , Chlorocebus aethiops , Ebolavirus/genetics , HEK293 Cells , Hemorrhagic Fever, Ebola/virology , Host-Pathogen Interactions , Humans , Lysine/genetics , Microscopy, Electron , Mutation , Nucleoproteins/genetics , Vero Cells , Viral Core Proteins/genetics , Virion/genetics , Virion/metabolism , Virion/ultrastructure
9.
Cell Cycle ; 14(2): 277-82, 2015.
Article in English | MEDLINE | ID: mdl-25607652

ABSTRACT

Tumor suppressor p53 plays a crucial antiviral role and targeting of p53 by viral proteins is a common mechanism involved in virus oncogenesis. The activity of p53 is tightly regulated at the post-translational levels through a myriad of modifications. Among them, modification of p53 by SUMO has been associated with the onset of cellular senescence. Kaposi´s sarcoma-associated herpesvirus (KSHV) expresses several proteins targeting p53, including the latent protein LANA2 that regulates polyubiquitylation and phosphorylation of p53. Here we show that LANA2 also inhibits the modification of p53 by SUMO2. Furthermore, we show that the reduction of p53-SUMO2 conjugation by LANA2, as well as the p53-LANA2 interaction, both require the SUMOylation of the viral protein and its interaction with SUMO or SUMOylated proteins in a non-covalent manner. Finally, we show that the control of p53-SUMO2 conjugation by LANA2 correlates with its ability to inhibit SUMO2- and type I interferon-induced senescence. These results highlight the importance of p53 SUMOylation in the control of virus infection and suggest that viral oncoproteins could contribute to viral infection and cell transformation by abrogating p53 SUMOylation.


Subject(s)
Antigens, Viral/metabolism , Herpesvirus 8, Human/metabolism , Nuclear Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Viral Proteins/metabolism , Antigens, Viral/genetics , Cell Line, Tumor , HEK293 Cells , Humans , Nuclear Proteins/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Sumoylation , Tumor Suppressor Protein p53/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
10.
J Biol Chem ; 289(38): 26357-26367, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25074923

ABSTRACT

The dsRNA-dependent kinase PKR is an interferon-inducible protein with ability to phosphorylate the α subunit of the eukaryotic initiation factor (eIF)-2 complex, resulting in a shut-off of general translation, induction of apoptosis, and inhibition of virus replication. Here we analyzed the modification of PKR by the small ubiquitin-like modifiers SUMO1 and SUMO2 and evaluated the consequences of PKR SUMOylation. Our results indicate that PKR is modified by both SUMO1 and SUMO2, in vitro and in vivo. We identified lysine residues Lys-60, Lys-150, and Lys-440 as SUMOylation sites in PKR. We show that SUMO is required for efficient PKR-dsRNA binding, PKR dimerization, and eIF2α phosphorylation. Furthermore, we demonstrate that SUMO potentiates the inhibition of protein synthesis induced by PKR in response to dsRNA, whereas a PKR SUMOylation mutant is impaired in its ability to inhibit protein synthesis and shows reduced capability to control vesicular stomatitis virus replication and to induce apoptosis in response to vesicular stomatitis virus infection. In summary, our data demonstrate the important role of SUMO in processes mediated by the activation of PKR.


Subject(s)
SUMO-1 Protein/metabolism , Sumoylation , eIF-2 Kinase/metabolism , 3T3 Cells , Animals , Enzyme Activation , Host-Pathogen Interactions , Immunity, Innate , Mice , Peptide Mapping , Protein Binding , Protein Multimerization , RNA, Double-Stranded/chemistry , RNA, Viral/chemistry , Sequence Analysis, Protein , Vesiculovirus/physiology , Virus Replication , eIF-2 Kinase/chemistry
11.
Sci Rep ; 3: 1690, 2013.
Article in English | MEDLINE | ID: mdl-23604351

ABSTRACT

SUMO-modified proteins are recognized by SUMO interacting motifs (SIMs), thus triggering diverse cellular responses. Here SIMs were used to develop SUMO-traps to capture endogenous SUMOylated proteins. Our results show that these small peptides are transferable motifs that maintain their SUMO binding capacity when fused to the heterologous carrier protein GST. The tandem disposition of SIMs increases the binding capacity of SUMO-traps to specifically interact with polySUMO but not poly-Ubiquitin chains. We demonstrate that this SUMO capturing system purifies SUMOylated proteins such as IκBα, PTEN, PML or p53 in vitro and in vivo. These properties can be used to explore the many critical functions regulated by protein SUMOylation.


Subject(s)
Small Ubiquitin-Related Modifier Proteins/chemistry , Small Ubiquitin-Related Modifier Proteins/isolation & purification , Sumoylation , Humans
12.
J Virol ; 87(2): 807-17, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23115286

ABSTRACT

Posttranslational modification by SUMO provides functional flexibility to target proteins. Viruses interact extensively with the cellular SUMO modification system in order to improve their replication, and there are numerous examples of viral proteins that are SUMOylated. However, thus far the relevance of SUMOylation for rotavirus replication remains unexplored. In this study, we report that SUMOylation positively regulates rotavirus replication and viral protein production. We show that SUMO can be covalently conjugated to the viroplasm proteins VP1, VP2, NSP2, VP6, and NSP5. In addition, VP1, VP2, and NSP2 can also interact with SUMO in a noncovalent manner. We observed that an NSP5 SUMOylation mutant protein retains most of its activities, such as its interaction with VP1 and NSP2, the formation of viroplasm-like structures after the coexpression with NSP2, and the ability to complement in trans the lack of NSP5 in infected cells. However, this mutant is characterized by a high degree of phosphorylation and is impaired in the formation of viroplasm-like structures when coexpressed with VP2. These results reveal for the first time a positive role for SUMO modification in rotavirus replication, describe the SUMOylation of several viroplasm resident rotavirus proteins, and demonstrate a requirement for NSP5 SUMOylation in the production of viroplasm-like structures.


Subject(s)
Host-Pathogen Interactions , Rotavirus/pathogenicity , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Viral Proteins/metabolism , Virus Replication , Animals , Cell Line , Humans , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...