Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 19(6): e1011418, 2023 06.
Article in English | MEDLINE | ID: mdl-37285383

ABSTRACT

It has been 49 years since the last discovery of a new virus family in the model yeast Saccharomyces cerevisiae. A large-scale screen to determine the diversity of double-stranded RNA (dsRNA) viruses in S. cerevisiae has identified multiple novel viruses from the family Partitiviridae that have been previously shown to infect plants, fungi, protozoans, and insects. Most S. cerevisiae partitiviruses (ScPVs) are associated with strains of yeasts isolated from coffee and cacao beans. The presence of partitiviruses was confirmed by sequencing the viral dsRNAs and purifying and visualizing isometric, non-enveloped viral particles. ScPVs have a typical bipartite genome encoding an RNA-dependent RNA polymerase (RdRP) and a coat protein (CP). Phylogenetic analysis of ScPVs identified three species of ScPV, which are most closely related to viruses of the genus Cryspovirus from the mammalian pathogenic protozoan Cryptosporidium parvum. Molecular modeling of the ScPV RdRP revealed a conserved tertiary structure and catalytic site organization when compared to the RdRPs of the Picornaviridae. The ScPV CP is the smallest so far identified in the Partitiviridae and has structural homology with the CP of other partitiviruses but likely lacks a protrusion domain that is a conspicuous feature of other partitivirus particles. ScPVs were stably maintained during laboratory growth and were successfully transferred to haploid progeny after sporulation, which provides future opportunities to study partitivirus-host interactions using the powerful genetic tools available for the model organism S. cerevisiae.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Fungal Viruses , RNA Viruses , Animals , Saccharomyces cerevisiae/genetics , RNA, Viral/genetics , Phylogeny , Cryptosporidiosis/genetics , Double Stranded RNA Viruses , RNA-Dependent RNA Polymerase/genetics , Genome, Viral , RNA, Double-Stranded , Mammals
2.
Microbiol Resour Announc ; 12(1): e0112322, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36453926

ABSTRACT

Iterons are short, repeated DNA sequences that are important for the replication of circular single-stranded DNA viruses. No tools that can reliably predict iterons are currently available. The CRUcivirus Iteron SEarch (CRUISE) tool is a computational tool that identifies iteron candidates near stem-loop structures in viral genomes.

3.
Front Microbiol ; 13: 1032918, 2022.
Article in English | MEDLINE | ID: mdl-36386652

ABSTRACT

Viruses are the most abundant biological entities on Earth, and yet, they have not received enough consideration in astrobiology. Viruses are also extraordinarily diverse, which is evident in the types of relationships they establish with their host, their strategies to store and replicate their genetic information and the enormous diversity of genes they contain. A viral population, especially if it corresponds to a virus with an RNA genome, can contain an array of sequence variants that greatly exceeds what is present in most cell populations. The fact that viruses always need cellular resources to multiply means that they establish very close interactions with cells. Although in the short term these relationships may appear to be negative for life, it is evident that they can be beneficial in the long term. Viruses are one of the most powerful selective pressures that exist, accelerating the evolution of defense mechanisms in the cellular world. They can also exchange genetic material with the host during the infection process, providing organisms with capacities that favor the colonization of new ecological niches or confer an advantage over competitors, just to cite a few examples. In addition, viruses have a relevant participation in the biogeochemical cycles of our planet, contributing to the recycling of the matter necessary for the maintenance of life. Therefore, although viruses have traditionally been excluded from the tree of life, the structure of this tree is largely the result of the interactions that have been established throughout the intertwined history of the cellular and the viral worlds. We do not know how other possible biospheres outside our planet could be, but it is clear that viruses play an essential role in the terrestrial one. Therefore, they must be taken into account both to improve our understanding of life that we know, and to understand other possible lives that might exist in the cosmos.

4.
Microbiol Resour Announc ; 10(26): e0042421, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34197205

ABSTRACT

Nucleic acid secondary structures play important roles in regulating biological processes. StemLoop-Finder is a computational tool to recognize and annotate conserved structural motifs in large data sets. The program is optimized for the detection of stem-loop structures that may serve as origins of replication in circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses.

5.
mBio ; 11(5)2020 09 01.
Article in English | MEDLINE | ID: mdl-32873755

ABSTRACT

The discovery of cruciviruses revealed the most explicit example of a common protein homologue between DNA and RNA viruses to date. Cruciviruses are a novel group of circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) viruses that encode capsid proteins that are most closely related to those encoded by RNA viruses in the family Tombusviridae The apparent chimeric nature of the two core proteins encoded by crucivirus genomes suggests horizontal gene transfer of capsid genes between DNA and RNA viruses. Here, we identified and characterized 451 new crucivirus genomes and 10 capsid-encoding circular genetic elements through de novo assembly and mining of metagenomic data. These genomes are highly diverse, as demonstrated by sequence comparisons and phylogenetic analysis of subsets of the protein sequences they encode. Most of the variation is reflected in the replication-associated protein (Rep) sequences, and much of the sequence diversity appears to be due to recombination. Our results suggest that recombination tends to occur more frequently among groups of cruciviruses with relatively similar capsid proteins and that the exchange of Rep protein domains between cruciviruses is rarer than intergenic recombination. Additionally, we suggest members of the stramenopiles/alveolates/Rhizaria supergroup as possible crucivirus hosts. Altogether, we provide a comprehensive and descriptive characterization of cruciviruses.IMPORTANCE Viruses are the most abundant biological entities on Earth. In addition to their impact on animal and plant health, viruses have important roles in ecosystem dynamics as well as in the evolution of the biosphere. Circular Rep-encoding single-stranded (CRESS) DNA viruses are ubiquitous in nature, many are agriculturally important, and they appear to have multiple origins from prokaryotic plasmids. A subset of CRESS-DNA viruses, the cruciviruses, have homologues of capsid proteins encoded by RNA viruses. The genetic structure of cruciviruses attests to the transfer of capsid genes between disparate groups of viruses. However, the evolutionary history of cruciviruses is still unclear. By collecting and analyzing cruciviral sequence data, we provide a deeper insight into the evolutionary intricacies of cruciviruses. Our results reveal an unexpected diversity of this virus group, with frequent recombination as an important determinant of variability.


Subject(s)
DNA Viruses/classification , Data Mining , Genome, Viral , Metagenome , Capsid Proteins/genetics , DNA Viruses/genetics , Metagenomics , RNA Viruses/classification , RNA Viruses/genetics , Tombusviridae/classification , Tombusviridae/genetics
6.
Microbiol Resour Announc ; 8(23)2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31171623

ABSTRACT

Cruciviruses are single-stranded DNA (ssDNA) viruses whose genomes suggest the possibility of gene transfer between DNA and RNA viruses. Many crucivirus genome sequences have been found in metagenomic data sets, although no crucivirus has been isolated. Here, we present the complete genome sequences of three cruciviruses recovered from environmental samples from Oregon.

7.
J Virol ; 92(20)2018 10 15.
Article in English | MEDLINE | ID: mdl-30068642

ABSTRACT

Viral RNA-dependent RNA polymerases (RdRps) are major determinants of high mutation rates and generation of mutant spectra that mediate RNA virus adaptability. The RdRp of the picornavirus foot-and-mouth disease virus (FMDV), termed 3D, is a multifunctional protein that includes a nuclear localization signal (NLS) in its N-terminal region. Previous studies documented that some amino acid substitutions within the NLS altered nucleotide recognition and enhanced the incorporation of the mutagenic purine analogue ribavirin in viral RNA, but the mutants tested were not viable and their response to lethal mutagenesis could not be studied. Here we demonstrate that NLS amino acid substitution M16A of FMDV serotype C does not affect infectious virus production but accelerates ribavirin-mediated virus extinction. The mutant 3D displays polymerase activity, RNA binding, and copying processivity that are similar to those of the wild-type enzyme but shows increased ribavirin-triphosphate incorporation. Crystal structures of the mutant 3D in the apo and RNA-bound forms reveal an expansion of the template entry channel due to the replacement of the bulky Met by Ala. This is a major difference with other 3D mutants with altered nucleotide analogue recognition. Remarkably, two distinct loop ß9-α11 conformations distinguish 3Ds that exhibit higher or lower ribavirin incorporation than the wild-type enzyme. This difference identifies a specific molecular determinant of ribavirin sensitivity of FMDV. Comparison of several polymerase mutants indicates that different domains of the molecule can modify nucleotide recognition and response to lethal mutagenesis. The connection of this observation with current views on quasispecies adaptability is discussed.IMPORTANCE The nuclear localization signal (NLS) of the foot-and-mouth disease virus (FMDV) polymerase includes residues that modulate the sensitivity to mutagenic agents. Here we have described a viable NLS mutant with an amino acid replacement that facilitates virus extinction by ribavirin. The corresponding polymerase shows increased incorporation of ribavirin triphosphate and local structural modifications that implicate the template entry channel. Specifically, comparison of the structures of ribavirin-sensitive and ribavirin-resistant FMDV polymerases has identified loop ß9-α11 conformation as a determinant of sensitivity to ribavirin mutagenesis.


Subject(s)
Foot-and-Mouth Disease Virus/enzymology , Mutagenesis , RNA-Dependent RNA Polymerase/metabolism , Amino Acid Substitution , Animals , Antiviral Agents/metabolism , Cell Line , Cricetinae , Crystallography, X-Ray , Nuclear Localization Signals , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , Ribavirin/metabolism
8.
Genome Biol Evol ; 9(5): 1212-1228, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28460010

ABSTRACT

The selective pressures acting on viruses that replicate under enhanced mutation rates are largely unknown. Here, we describe resistance of foot-and-mouth disease virus to the mutagen 5-fluorouracil (FU) through a single polymerase substitution that prevents an excess of A to G and U to C transitions evoked by FU on the wild-type foot-and-mouth disease virus, while maintaining the same level of mutant spectrum complexity. The polymerase substitution inflicts upon the virus a fitness loss during replication in absence of FU but confers a fitness gain in presence of FU. The compensation of mutational bias was documented by in vitro nucleotide incorporation assays, and it was associated with structural modifications at the N-terminal region and motif B of the viral polymerase. Predictions of the effect of mutations that increase the frequency of G and C in the viral genome and encoded polymerase suggest multiple points in the virus life cycle where the mutational bias in favor of G and C may be detrimental. Application of predictive algorithms suggests adverse effects of the FU-directed mutational bias on protein stability. The results reinforce modulation of nucleotide incorporation as a lethal mutagenesis-escape mechanism (that permits eluding virus extinction despite replication in the presence of a mutagenic agent) and suggest that mutational bias can be a target of selection during virus replication.


Subject(s)
Amino Acid Substitution , Foot-and-Mouth Disease Virus/genetics , Mutation , Cell Line , Fluorouracil/metabolism , Foot-and-Mouth Disease Virus/enzymology , Foot-and-Mouth Disease Virus/physiology , Genetic Fitness , Kinetics , Models, Molecular , Protein Folding , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Virus Replication
9.
Virology ; 494: 257-66, 2016 07.
Article in English | MEDLINE | ID: mdl-27136067

ABSTRACT

We previously characterized a foot-and-mouth disease virus (FMDV) with three amino acid replacements in its polymerase (3D) that conferred resistance to the mutagenic nucleoside analogue ribavirin. Here we show that passage of this mutant in the presence of high ribavirin concentrations resulted in selection of viruses with the additional replacement I248T in 2C. This 2C substitution alone (even in the absence of replacements in 3D) increased FMDV fitness mainly in the presence of ribavirin, prevented an incorporation bias in favor of A and U associated with ribavirin mutagenesis, and conferred the ATPase activity of 2C decreased sensitivity to ribavirin-triphosphate. Since in previous studies we described that 2C with I248T was selected under different selective pressures, this replacement qualifies as a joker substitution in FMDV evolution. The results have identified a role of 2C in nucleotide incorporation, and have unveiled a new polymerase-independent mechanism of virus escape to lethal mutagenesis.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Microbial Viability/genetics , Mutation , Adenosine Triphosphatases/metabolism , Antigens, Viral/genetics , Antigens, Viral/metabolism , Antiviral Agents/pharmacology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Dose-Response Relationship, Drug , Drug Resistance, Viral , Enzyme Activation , Foot-and-Mouth Disease Virus/drug effects , Kinetics , Microbial Viability/drug effects , Ribavirin/pharmacology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
10.
J Virol ; 89(13): 6848-59, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25903341

ABSTRACT

UNLABELLED: The N-terminal region of the foot-and-mouth disease virus (FMDV) 3D polymerase contains the sequence MRKTKLAPT (residues 16 to 24) that acts as a nuclear localization signal. A previous study showed that substitutions K18E and K20E diminished the transport to the nucleus of 3D and 3CD and severely impaired virus infectivity. These residues have also been implicated in template binding, as seen in the crystal structures of different 3D-RNA elongation complexes. Here, we report the biochemical and structural characterization of different mutant polymerases harboring substitutions at residues 18 and 20, in particular, K18E, K18A, K20E, K20A, and the double mutant K18A K20A (KAKA). All mutant enzymes exhibit low RNA binding activity, low processivity, and alterations in nucleotide recognition, including increased incorporation of ribavirin monophosphate (RMP) relative to the incorporation of cognate nucleotides compared with the wild-type enzyme. The structural analysis shows an unprecedented flexibility of the 3D mutant polymerases, including both global rearrangements of the closed-hand architecture and local conformational changes at loop ß9-α11 (within the polymerase motif B) and at the template-binding channel. Specifically, in 3D bound to RNA, both K18E and K20E induced the opening of new pockets in the template channel where the downstream templating nucleotide at position +2 binds. The comparisons of free and RNA-bound enzymes suggest that the structural rearrangements may occur in a concerted mode to regulate RNA replication, processivity, and fidelity. Thus, the N-terminal region of FMDV 3D that acts as a nuclear localization signal (NLS) and in template binding is also involved in nucleotide recognition and can affect the incorporation of nucleotide analogues. IMPORTANCE: The study documents multifunctionality of a nuclear localization signal (NLS) located at the N-terminal region of the foot-and-mouth disease viral polymerase (3D). Amino acid substitutions at this polymerase region can impair the transport of 3D to the nucleus, reduce 3D binding to RNA, and alter the relative incorporation of standard nucleoside monophosphate versus ribavirin monophosphate. Structural data reveal that the conformational changes in this region, forming part of the template channel entry, would be involved in nucleotide discrimination. The results have implications for the understanding of viral polymerase function and for lethal mutagenesis mechanisms.


Subject(s)
Antigens, Viral/chemistry , Antigens, Viral/metabolism , Foot-and-Mouth Disease Virus/enzymology , Nuclear Localization Signals , Nucleotides/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Amino Acid Substitution , Antigens, Viral/genetics , Crystallography, X-Ray , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Protein Binding , Protein Conformation , RNA/metabolism , Viral Nonstructural Proteins/genetics
11.
PLoS Pathog ; 6(8): e1001072, 2010 Aug 26.
Article in English | MEDLINE | ID: mdl-20865120

ABSTRACT

Resistance of viruses to mutagenic agents is an important problem for the development of lethal mutagenesis as an antiviral strategy. Previous studies with RNA viruses have documented that resistance to the mutagenic nucleoside analogue ribavirin (1-ß-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) is mediated by amino acid substitutions in the viral polymerase that either increase the general template copying fidelity of the enzyme or decrease the incorporation of ribavirin into RNA. Here we describe experiments that show that replication of the important picornavirus pathogen foot-and-mouth disease virus (FMDV) in the presence of increasing concentrations of ribavirin results in the sequential incorporation of three amino acid substitutions (M296I, P44S and P169S) in the viral polymerase (3D). The main biological effect of these substitutions is to attenuate the consequences of the mutagenic activity of ribavirin -by avoiding the biased repertoire of transition mutations produced by this purine analogue-and to maintain the replicative fitness of the virus which is able to escape extinction by ribavirin. This is achieved through alteration of the pairing behavior of ribavirin-triphosphate (RTP), as evidenced by in vitro polymerization assays with purified mutant 3Ds. Comparison of the three-dimensional structure of wild type and mutant polymerases suggests that the amino acid substitutions alter the position of the template RNA in the entry channel of the enzyme, thereby affecting nucleotide recognition. The results provide evidence of a new mechanism of resistance to a mutagenic nucleoside analogue which allows the virus to maintain a balance among mutation types introduced into progeny genomes during replication under strong mutagenic pressure.


Subject(s)
Adaptation, Physiological/genetics , Antigens, Viral/genetics , Drug Resistance, Viral/genetics , Foot-and-Mouth Disease Virus/genetics , Genes, Viral/genetics , Viral Nonstructural Proteins/genetics , Amino Acid Sequence , Amino Acid Substitution , Antigens, Viral/chemistry , Antiviral Agents/pharmacology , Molecular Sequence Data , Mutation , Nucleosides , Protein Structure, Quaternary , Reverse Transcriptase Polymerase Chain Reaction , Ribavirin/pharmacology , Viral Nonstructural Proteins/chemistry , Viral Proteins/chemistry , Viral Proteins/genetics , X-Ray Diffraction
12.
J Virol ; 84(12): 6188-99, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20392853

ABSTRACT

Passage of poliovirus (PV) or foot-and-mouth disease virus (FMDV) in the presence of ribavirin selected for viruses with decreased sensitivity to R, which included different mutations in their polymerase (3D): G64S located in the finger subdomain in the case of PV and M296I located within loop beta9-alpha11 at the active site in the case of FMDV. To investigate why disparate substitutions were selected in two closely related 3Ds, we constructed FMDVs with a 3D that included either G62S (the equivalent replacement in FMDV of PV G64S), M296I, or both substitutions. G62S, but not M296I, inflicts upon FMDV a strong selective disadvantage which is partially compensated for by the substitution M296I. The corresponding mutant polymerases, 3D(G62S), 3D(M296I), and 3D(G62S-M296I), were analyzed functionally and structurally. G62S in 3D impairs RNA-binding, polymerization, and R monophosphate incorporation activities. The X-ray structures of the 3D(G62S)-RNA, 3D(M296I)-RNA, and 3D(G62S-M296I)-RNA complexes show that although the two positions are separated by 13.1 A, the loops where the replacements reside are tightly connected through an extensive network of interactions that reach the polymerase active site. In particular, G62S seems to restrict the flexibility of loop beta9-alpha11 and, as a consequence, the flexibility of the active site and its ability to bind the RNA template. Thus, a localized change in the finger subdomain of 3D may affect the catalytic domain. The results provide a structural interpretation of why different amino acid substitutions were selected to confer R resistance in closely related viruses and reveal a complex network of intra-3D interactions that can affect the recognition of both the RNA template and incoming nucleotide.


Subject(s)
DNA-Directed RNA Polymerases/chemistry , Enzyme Inhibitors/pharmacology , Foot-and-Mouth Disease Virus/enzymology , Mutation , Ribavirin/pharmacology , Viral Proteins/chemistry , Amino Acid Sequence , Animals , Catalytic Domain , Cell Line , Cricetinae , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/chemistry , Foot-and-Mouth Disease Virus/drug effects , Foot-and-Mouth Disease Virus/genetics , Molecular Conformation , Molecular Sequence Data , Protein Binding , Viral Proteins/antagonists & inhibitors , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...