Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Oncogene ; 43(14): 1063-1074, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374406

ABSTRACT

Flotillin-1 contributes to invasion and metastasis in triple negative breast cancer (TNBC) and is modified post-translationally through palmitoylation. Palmitoylation, the process of conjugating palmitoyl-CoA to proteins, plays an essential role in protein stability and trafficking. Thus far, there has not been any investigation into the role of flotillin-1 palmitoylation in the context of metastasis in vivo. To address the role of flotillin-1 palmitoylation in metastasis, MDA-MB-231 cells expressing palmitoylation defective flotillin-1 constructs were used as models. Compared to flotillin-1 WT expressing tumors, flotillin-1 palmitoylation defective displayed abrogated tumor progression and lung metastasis in vivo in both spontaneous and experimental models. Further mechanistic investigation led to the identification of zDHHC5 as the main palmitoyl acyltransferase responsible for palmitoylating endogenous flotillin-1. Modulation of flotillin-1 palmitoylation status through mutagenesis, zDHHC5 silencing, and 2-bromopalmitate inhibition all resulted in the proteasomal degradation of flotillin-1 protein. To assess if flotillin-1 palmitoylation can be inhibited for potential clinical relevance, we designed a competitive peptide fused to a cell penetrating peptide sequence, which displayed efficacy in blocking flotillin-1 palmitoylation in vitro without altering palmitoylation of other zDHHC5 substrates, highlighting its specificity. Additionally, TNBC xenograft tumor models expressing a doxycycline inducible flotillin-1 palmitoylation inhibiting peptide displayed attenuated tumor growth and lung metastasis. Collectively, these results reveal a novel palmitoylation dependent mechanism which is essential for the stability of flotillin-1 protein. More specifically, disruption of flotillin-1 palmitoylation through mutagenesis or competitive peptide promoted flotillin-1 protein degradation, subsequently impeding its tumor promoting and metastasis-inducing effects in TNBC tumor models.


Subject(s)
Lung Neoplasms , Membrane Proteins , Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Lipoylation , Lung Neoplasms/genetics , Membrane Proteins/metabolism , Peptides , Triple Negative Breast Neoplasms/genetics
2.
BMC Cancer ; 22(1): 976, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36096767

ABSTRACT

BACKGROUND: Fatty acid synthase (FASN) expression is associated with a more aggressive breast cancer phenotype and is regulated downstream of receptor tyrosine kinase (RTK) signaling pathways. Recently, post transcriptional regulation of lipogenic transcripts have been demonstrated as being mediated downstream of serine-arginine rich protein kinase 2 (SRPK2), which acts to phosphorylate serine-arginine rich splicing factors (SRSFs), resulting in RNA binding and various RNA regulatory processes. Though post-transcriptional regulation of FASN has been studied previously, the upstream mediators of these pathways have not been elucidated. METHODS: Western blotting and RT-qPCR were utilized to demonstrate alterations in FASN and mRNA expression upon modulation of the IGF-1-mTORC1-SRPK2 pathway by small molecule inhibitors or RNAi mediated silencing. RNA stability was accessed by using the transcriptional inhibitor actinomycin-D followed by RT-qPCR. Further, we employed RNA-immunoprecipitation to demonstrate the direct binding of SRSF-1 to FASN transcripts. RESULTS: In the current study, we demonstrated an IGF-1 induced increase in FASN mRNA and protein expression that was attenuated by mTORC1 inhibition. This mTORC1 inhibition also resulted in decreases in total and nuclear p-SRPK2 in response to IGF-1 exposure. Upon SRPK2 knockdown and inhibition, we observed a decrease in FASN protein and mRNA stability, respectively, in response to IGF-1 exposure that was specific to triple negative and HER2+ breast cancer cell lines. As we explored further, IGF-1 exposure resulted in an altered localization of eGFP expressed SRSF-1, pEGFP-SRSF-1 that was rescued upon both SRPK2 knockdown and mTORC1 inhibition. Further, we observed an increase binding of SRSF-1 to FASN RNA upon IGF-1 exposure, which was abrogated by SRPK2 knockdown. CONCLUSION: These current findings establish a potential IGF-1-mTORC1-SRPK2-FASN axis in breast cancer, which could be a potential therapeutic target for cancers that overexpress FASN and components of the IGF-1R pathway.


Subject(s)
Insulin-Like Growth Factor I , Neoplasms , Arginine , Cell Line, Tumor , Fatty Acid Synthases/metabolism , Insulin-Like Growth Factor I/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Protein Kinases , Protein Serine-Threonine Kinases , RNA , RNA, Messenger , Serine
3.
Breast Cancer (Auckl) ; 16: 11782234221111374, 2022.
Article in English | MEDLINE | ID: mdl-36035625

ABSTRACT

Purpose: The objective of this study is to determine the impact of exposure to obesity-related systemic factors on fatty acid synthase enzyme (FASN) expression in breast cancer cells. Methods: MCF-7 breast cancer cells were exposed to sera from patients having obesity or not having obesity and subjected to quantitative reverse transcription polymerase chain reaction (RT-qPCR). Subsequent MTT and colony-forming assays using both MCF-7 and T-47D cells exposed to sera and treated with or without FASN inhibitor, TVB-3166, were used. MCF-7 cells were then treated with insulin and the sterol regulatory element-binding protein (SREBP) processing inhibitor, betulin, prior to analysis of FASN expression by quantitative RT-qPCR and western blot. Insulin-induced SREBP-FASN promoter binding was analyzed by chromatin immunoprecipitation with an anti-SREBP antibody. Results: In response to sera exposure (body mass index [BMI] >30) there was an increase in FASN expression in breast cancer cells. Furthermore, treatment with the FASN inhibitor, TVB-3166, resulted in a decreased breast cancer cell survival and proliferation while increasing apoptosis upon sera exposure (BMI >30). Insulin-exposed MCF-7 cells exhibited an increased FASN messenger RNA and protein expression, which is abrogated upon SREBP inhibition. In addition, insulin exposure induced enhanced SREBP binding to the FASN promoter. Conclusions: Our results implicate FASN as a potential mediator of obesity-induced breast cancer aggression and a therapeutic target of patients with obesity-induced breast cancer.

4.
Nutr Cancer ; 74(2): 650-659, 2022.
Article in English | MEDLINE | ID: mdl-33715540

ABSTRACT

Obesity is associated with low-grade chronic inflammation, and metabolic dysregulation. Evidence shows that chronic inflammation inhibits protective immunity mediated by CD4+ T cells. Additionally, obesity-induced inflammation affects prostate cancer progression. However, the effect of obesity on CD4+ T-cell- response to prostate cancer is not well understood. To investigate whether obesity induces changes in CD4+ T cell cytokine profile, cytokine expression was measured in splenic CD4+ T-cells from 10-week-old male C57Bl/6 mice exposed to conditioned media (CM) from macrophages grown in sera from obese subjects. Additionally, expression levels of key regulators of Epithelial-Mesenchymal Transition (EMT) were measure in prostate cancer epithelial cells exposed to conditioned media from obesity-modified T-cells. Cell migration and invasion was measured in prostate cancer epithelial cells exposed to CM from obesity-modified CD4+ T-cells. Obesity suppressed the expression of IFNγ and IL-2 in CD4+ T-cells but up-regulated the expression of IL-6. Prostate epithelial cancer cells exposed to conditioned media from obesity-modified T cell increased the expression of EMT markers and showed a higher invasive and migratory capacity.


Subject(s)
Prostate , Prostatic Neoplasms , Animals , CD4-Positive T-Lymphocytes , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition/genetics , Humans , Male , Mice , Obesity/complications , Phenotype , Prostate/metabolism , Prostatic Neoplasms/metabolism
5.
Breast Cancer Res Treat ; 187(2): 375-386, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33893909

ABSTRACT

PURPOSE: The majority of breast cancers are estrogen receptor (ERα) positive making endocrine therapy a mainstay for these patients. Unfortunately, resistance to endocrine therapy is a common occurrence. Fatty acid synthase (FASN) is a key enzyme in lipid biosynthesis and its expression is commensurate with tumor grade and resistance to numerous therapies. METHODS: The effect of the FASN inhibitor TVB-3166 on ERα expression and cell growth was characterized in tamoxifen-resistant cell lines, xenografts, and patient explants. Subcellular localization of ERα was assessed using subcellular fractionations. Palmitoylation and ubiquitination of ERα were assessed by immunoprecipitation. ERα and p-eIF2α protein levels were analyzed by Western blotting after treatment with TVB-3166 with or without the addition of palmitate or BAPTA. RESULTS: TVB-3166 treatment leads to a marked inhibition of proliferation in tamoxifen-resistant cells compared to the parental cells. Additionally, TVB-3166 significantly inhibited tamoxifen-resistant breast tumor growth in mice and decreased proliferation of primary tumor explants compared to untreated controls. FASN inhibition significantly reduced ERα levels most prominently in endocrine-resistant cells and altered its subcellular localization. Furthermore, we showed that the reduction of ERα expression upon TVB-3166 treatment is mediated through the induction of endoplasmic reticulum stress. CONCLUSION: Our preclinical data provide evidence that FASN inhibition by TVB-3166 presents a promising therapeutic strategy for the treatment of endocrine-resistant breast cancer. Further clinical development of FASN inhibitors for endocrine-resistant breast cancer should be considered.


Subject(s)
Breast Neoplasms , Enzyme Inhibitors/therapeutic use , Fatty Acid Synthase, Type I/antagonists & inhibitors , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Estrogen Receptor alpha/genetics , Fatty Acid Synthase, Type I/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Tamoxifen/pharmacology
6.
Med Hypotheses ; 117: 63-68, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30077200

ABSTRACT

Prostate cancer incidence increases with age; along with many other cancers, it could be considered a disease of aging. Prostate cancer screening has led to a significant proportion of men diagnosed with low-grade, low-stage prostate cancer who are now more likely to choose an active surveillance strategy rather than definitive treatments. Definitive treatment, such as surgery and radiation therapy, is useful for high-grade disease; however, because of the low long-term risk of progression of a low-grade disease and side effects of surgery and radiation, these treatments are less commonly used for low-grade disease. While five alpha reductase inhibitors have been shown to reduce the risk of cancer detection on subsequent biopsies for men on active surveillance, no medications have been proven to prevent progression to high-grade disease. mTOR pathways have long been known to influence prostate cancer and are targets in various prostate cancer patient populations. Low-dose mTOR inhibition with rapamycin has shown promise in pre-clinical models of prostate cancer and appear to affect cellular senescence and immunomodulation in the aging population. We hypothesize that low-dose mTOR inhibition could reduce progression of low-grade prostate cancer patients, allowing them to remain on active surveillance.


Subject(s)
5-alpha Reductase Inhibitors/pharmacology , Prostatic Neoplasms/drug therapy , TOR Serine-Threonine Kinases/antagonists & inhibitors , Aged , Animals , Cell Line, Tumor , Cellular Senescence , Disease Progression , Early Detection of Cancer , Glucose Intolerance , Humans , Magnetic Resonance Imaging , Male , Mice , Middle Aged , Models, Theoretical , Prostate/pathology , Prostate-Specific Antigen/blood , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Androgen/metabolism , Sirolimus/pharmacology
7.
Mol Cancer Res ; 16(5): 869-879, 2018 05.
Article in English | MEDLINE | ID: mdl-29453319

ABSTRACT

Obesity is associated with poor prognosis in triple-negative breast cancer (TNBC). Preclinical models of TNBC were used to test the hypothesis that increased leptin signaling drives obesity-associated TNBC development by promoting cancer stem cell (CSC) enrichment and/or epithelial-to-mesenchymal transition (EMT). MMTV-Wnt-1 transgenic mice, which develop spontaneous basal-like, triple-negative mammary tumors, received either a control diet (10% kcal from fat) or a diet-induced obesity regimen (DIO, 60% kcal from fat) for up to 42 weeks (n = 15/group). Mice were monitored for tumor development and euthanized when tumor diameter reached 1.5 cm. Tumoral gene expression was assessed via RNA sequencing (RNA-seq). DIO mice had greater body weight and percent body fat at termination than controls. DIO mice, versus controls, demonstrated reduced survival, increased systemic metabolic and inflammatory perturbations, upregulated tumoral CSC/EMT gene signature, elevated tumoral aldehyde dehydrogenase activity (a CSC marker), and greater leptin signaling. In cell culture experiments using TNBC cells (murine: E-Wnt and M-Wnt; human: MDA-MB-231), leptin enhanced mammosphere formation, and media supplemented with serum from DIO versus control mice increased cell viability, migration, invasion, and CSC- and EMT-related gene expression, including Foxc2, Twist2, Vim, Akt3, and Sox2 In E-Wnt cells, knockdown of leptin receptor ablated these procancer effects induced by DIO mouse serum. These findings indicate that increased leptin signaling is causally linked to obesity-associated TNBC development by promoting CSC enrichment and EMT.Implications: Leptin-associated signals impacting CSC and EMT may provide new targets and intervention strategies for decreasing TNBC burden in obese women. Mol Cancer Res; 16(5); 869-79. ©2018 AACR.


Subject(s)
Leptin/metabolism , Neoplastic Stem Cells/metabolism , Obesity/metabolism , Triple Negative Breast Neoplasms/genetics , Animals , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Female , Humans , Mice , Neoplastic Stem Cells/pathology , Signal Transduction , Triple Negative Breast Neoplasms/pathology
8.
Cancer Res ; 77(9): 2500-2511, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28373182

ABSTRACT

The association between obesity and breast cancer risk and prognosis is well established in estrogen receptor (ER)-positive disease but less clear in HER2-positive disease. Here, we report preclinical evidence suggesting weight maintenance through calorie restriction (CR) may limit risk of HER2-positive breast cancer. In female MMTV-HER2/neu transgenic mice, we found that ERα and ERß expression, mammary tumorigenesis, and survival are energy balance dependent in association with epigenetic reprogramming. Mice were randomized to receive a CR, overweight-inducing, or diet-induced obesity regimen (n = 27/group). Subsets of mice (n = 4/group/time point) were euthanized after 1, 3, and 5 months to characterize diet-dependent metabolic, transcriptional, and epigenetic perturbations. Remaining mice were followed up to 22 months. Relative to the overweight and diet-induced obesity regimens, CR decreased body weight, adiposity, and serum metabolic hormones as expected and also elicited an increase in mammary ERα and ERß expression. Increased DNA methylation accompanied this pattern, particularly at CpG dinucleotides located within binding or flanking regions for the transcriptional regulator CCCTC-binding factor of ESR1 and ESR2, consistent with sustained transcriptional activation of ERα and ERß. Mammary expression of the DNA methylation enzyme DNMT1 was stable in CR mice but increased over time in overweight and diet-induced obesity mice, suggesting CR obviates epigenetic alterations concurrent with chronic excess energy intake. In the survival study, CR elicited a significant suppression in spontaneous mammary tumorigenesis. Overall, our findings suggest a mechanistic rationale to prevent or reverse excess body weight as a strategy to reduce HER2-positive breast cancer risk. Cancer Res; 77(9); 2500-11. ©2017 AACR.


Subject(s)
Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Mammary Neoplasms, Animal/genetics , Obesity/genetics , Animals , Breast Neoplasms/physiopathology , Caloric Restriction , Carcinogenesis/genetics , DNA Methylation/genetics , Energy Metabolism/genetics , Epigenesis, Genetic/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Mammary Neoplasms, Animal/etiology , Mammary Neoplasms, Animal/physiopathology , Mice , Mice, Transgenic , Obesity/complications , Obesity/physiopathology , Receptor, ErbB-2/genetics , Risk Factors
9.
Nutr Cancer ; 68(6): 1021-33, 2016.
Article in English | MEDLINE | ID: mdl-27367296

ABSTRACT

Epidemiological studies have correlated frequent omega-3 (n-3) fatty acid consumption with a lower risk for breast cancer; however, recent prospective studies have been less conclusive. Efforts in the preventive setting have focused on the use of n-3 fatty acids, and the pharmaceutical ethyl esters (EE) of these natural compounds, for high-risk patient populations. Limited understanding of specific mechanisms by which these agents function has hampered identification of the cancer subtype(s) that would gain the greatest therapeutic benefit. In this study, we investigated the in vitro effects of n-3 EEs in four distinct breast cancer subtypes and explored how they affect not only breast cancer cell survival but also modulate the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and peroxisome proliferator-activated receptor gamma signaling pathways. Similar to the high variance in response observed in human studies, we found that the effectiveness of n-3 EEs depends on the molecular characteristics of the MCF-7, CAMA-1, MDA-MB-231, and SKBR3 breast cancer cell lines and is closely associated with the suppression of NF-κB. These data strongly suggest that the use of n-3 fatty acids and their pharmaceutical ether esters in the prevention and therapeutic setting should be guided by specific tumor characteristics.


Subject(s)
Anticarcinogenic Agents/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Fatty Acids, Omega-3/metabolism , Neoplasm Proteins/genetics , Polymorphism, Single Nucleotide , Anticarcinogenic Agents/therapeutic use , Breast Neoplasms/pathology , Breast Neoplasms/prevention & control , Cell Line, Tumor , Cell Survival , Colony-Forming Units Assay , Dietary Supplements , Docosahexaenoic Acids/therapeutic use , Drug Combinations , Eicosapentaenoic Acid/therapeutic use , Esters/metabolism , Esters/therapeutic use , Fatty Acids, Omega-3/therapeutic use , Female , Gene Expression Regulation, Neoplastic , Genes, Reporter , Humans , Kinetics , Mutation , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , PPAR gamma/antagonists & inhibitors , PPAR gamma/genetics , PPAR gamma/metabolism , Signal Transduction
10.
PLoS One ; 10(12): e0145452, 2015.
Article in English | MEDLINE | ID: mdl-26709918

ABSTRACT

Obesity is associated with a worse breast cancer prognosis, while greater breast tumor estrogen receptor beta (ERß) expression is correlated with improved therapy response and survival. The objective of this study was to determine the impact of obesity on breast cancer cell ERß expression, which is currently unknown. We utilized an in vitro model of obesity in which breast cancer cells were exposed to patient serum pooled by body mass index category (obese (OB): ≥30 kg/m2; normal weight (N): 18.5-24.9 kg/m2). Four human mammary tumor cell lines representing the major breast cancer subtypes (SKBR3, MCF-7, ZR75, MDA-MB-231) and mammary tumor cells from MMTV-neu mice were used. ERß expression, assessed by qPCR and western blotting, was suppressed in the two HER2-overexpressing cell lines (SKBR3, MMTV-neu) following OB versus N sera exposure, but did not vary in the other cell lines. Expression of Bcl-2 and cyclin D1, two genes negatively regulated by ERß, was elevated in SKBR3 cells following exposure to OB versus N sera, but this difference was eliminated when the ERß gene was silenced with siRNA. Herceptin, a HER2 antagonist, and siRNA to HER2 were used to evaluate the role of HER2 in sera-induced ERß modulation. SKBR3 cell treatment with OB sera plus Herceptin increased ERß expression three-fold. Similar results were obtained when HER2 expression was silenced with siRNA. OB sera also promoted greater SKBR3 cell viability and growth, but this variance was not present when ERß was silenced or the cells were modified to overexpress ERß. Based on this data, we conclude that obesity-associated systemic factors suppress ERß expression in breast cancer cells via a HER2-mediated pathway, leading to greater cell viability and growth. Elucidation of the mechanism(s) mediating this effect could provide important insights into how ERß expression is regulated as well as how obesity promotes a more aggressive disease.


Subject(s)
Breast Neoplasms/pathology , Estrogen Receptor beta/genetics , Gene Expression Regulation, Neoplastic , Obesity/genetics , Receptor, ErbB-2/metabolism , Signal Transduction , Animals , Cell Line, Tumor , Cell Proliferation , Cell Survival , Cyclin D1/metabolism , Female , Gene Silencing , Humans , Mice , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptor, ErbB-2/deficiency , Receptor, ErbB-2/genetics , Transcription, Genetic
11.
Curr Pharmacol Rep ; 1(5): 336-345, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26442202

ABSTRACT

Multiple studies have demonstrated that obesity is associated with a worse outcome for all breast cancer subtypes and that obese breast cancer patients do not respond as well as normal weight patients to aromatase inhibitor treatment and chemotherapy. While a number of mechanisms have been proposed to explain this link, recent studies have provided evidence that elevated local cyclooxygenase-2 (COX-2) expression and the resulting increase in prostaglandin E2 (PGE2) production may play an important role. COX-2 upregulation in breast tumors is associated with a poor prognosis, a connection generally attributed to PGE2's direct effects on apoptosis and invasion as well as its stimulation of pre-adipocyte aromatase expression and subsequent estrogen production. Research in this area has provided a strong foundation for the hypothesis that COX-2 signaling is involved in the obesity-breast cancer link, and further study regarding the role of COX-2 in this link is warranted.

12.
Article in English | MEDLINE | ID: mdl-26029167

ABSTRACT

Numerous epidemiological and pre-clinical studies have demonstrated that the insulin/insulin-like growth factor (IGF) system plays a key role in the development and progression of several types of cancer. Insulin/IGF signaling, in cooperation with chronic low-grade inflammation, is also an important contributor to the cancer-promoting effects of obesity. However, clinical trials for drugs targeting different components of this system have produced largely disappointing results, possibly due to the lack of predictive biomarker use and problems with the design of combination therapy regimens. With careful attention to the identification of likely patient responders and optimal drug combinations, the outcome of future trials may be improved. Given that insulin/IGF signaling is known to contribute to obesity-associated cancer, further investigation regarding the efficacy of drugs targeting this system and its downstream effectors in the obese patient population is warranted.

13.
Cancer Prev Res (Phila) ; 8(9): 796-806, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26100521

ABSTRACT

Obesity induces chronic inflammation and is an established risk and progression factor for triple-negative breast cancers, including basal-like (BL) and claudin-low (CL) subtypes. We tested the effects of dietary supplementation with ethyl esters of the marine-derived anti-inflammatory omega-3 fatty acids eicosapentaenoic and docosahexaenoic acid (EPA+DHA; Lovaza) on growth of murine BL and CL mammary tumors. Female ovariectomized C57BL/6 mice were fed a control diet or a diet-induced obesity (DIO) diet with or without EPA+DHA (0.025%, resulting in blood levels of EPA and DHA comparable with women taking Lovaza 4 g/d) for 6 weeks. All mice were then orthotopically injected with Wnt-1 cells (a BL tumor cell suspension derived from MMTV-Wnt-1 transgenic mouse mammary tumors) or M-Wnt cells (a CL tumor cell line cloned from the Wnt-1 tumor cell suspension). Mice were killed when tumors were 1 cm in diameter. EPA+DHA supplementation did not significantly affect Wnt-1 or M-Wnt mammary tumor growth in normoweight control mice. However, EPA+DHA supplementation in DIO mice reduced growth of Wnt-1 and M-Wnt tumors; reduced leptin:adiponectin ratio and proinflammatory eicosanoids in the serum; improved insulin sensitivity; and decreased tumoral expression of COX-2 and phospho-p65. Thus, EPA+DHA supplementation in mouse models of postmenopausal BL and CL breast cancer offsets many of the protumorigenic effects of obesity. These preclinical findings, in combination with results from parallel biomarker studies in women, suggest that EPA+DHA supplementation may reduce the burden of BL and CL breast cancer in obese women.


Subject(s)
Claudin-1/metabolism , Fatty Acids, Omega-3/chemistry , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Experimental/metabolism , Obesity/genetics , Adiponectin/blood , Animals , Body Composition , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Eicosanoids/blood , Erythrocytes/cytology , Esters/chemistry , Female , Glucose Tolerance Test , Inflammation , Leptin/blood , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Obesity/metabolism , Pilot Projects , Postmenopause , Transcription Factor RelA/metabolism , Wnt1 Protein/metabolism
14.
Prostate ; 75(5): 449-62, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25560177

ABSTRACT

BACKGROUND: A close relationship between aging, inflammation, and prostate cancer is widely accepted. Aging is accompanied by a progressive increase in pro-inflammatory cytokines, including interleukin 17 (IL-17), a key pro-inflammatory cytokine that becomes dysregulated with age. However, the contribution of IL-17 to age-related prostate tumorigenesis remains unclear. The aim of this study was to investigate the role of age-related IL-17 dysregulation in prostate tumorigenesis. METHODS: Serum and splenic T-lymphocytes from young GPAT-1 knock-out aging-mimic T cell mice as well as young and aged wild-type mice were collected. shRNA was used to knock down the IL-17 receptor in LNCaP prostate cancer cells and RWPE-1 non-transformed prostate epithelial cells, which were then exposed to the mouse sera or conditioned media from stimulated T-lymphocytes. NF-κB activation, NF-κB target gene expression, and cell proliferation were all measured in these cells by luciferase assay, qPCR, Western blot analysis, and MTT assay, respectively. RESULTS: T-lymphocyte-secreted IL-17 from aging-mimic mice induced NF-κB activity and target gene expression in LNCaP and RWPE-1 cells. It also promoted proliferation of these cells. CONCLUSION: Aging-mimic T cell mice produce increased levels of IL-17, which stimulates the pro-inflammatory NF-κB pathway in prostate epithelial cells. NF-κB increases inflammation, carcinogenesis and metastatic potential in the prostate. These findings provide evidence that the dysregulation of cytokine production seen in aged T cells may directly contribute to the increased risk for prostate cancer in the elderly.


Subject(s)
Aging/physiology , Interleukin-17/metabolism , Prostatic Neoplasms/metabolism , Signal Transduction/physiology , Animals , Blotting, Western , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/pathology , Epithelial Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/metabolism , Receptors, Interleukin-17/genetics , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/immunology
15.
Breast Cancer Res Treat ; 149(1): 49-57, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25476497

ABSTRACT

Obesity is associated with a worse breast cancer prognosis, particularly in estrogen receptor alpha (ERα) positive, postmenopausal patients. We hypothesized that this is mediated in part by an elevation in breast cancer cell cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production that results in greater local pre-adipocyte aromatase expression. We utilized an in vitro model of the obese patient's tumor microenvironment in which cultured MCF-7 breast cancer cells and pre-adipocytes were exposed to pooled serum from obese (OB; BMI ≥ 30.0 kg/m(2)) or normal weight (N; BMI 18.5-24.9 kg/m(2)) postmenopausal women. Exposure to OB versus N sera significantly increased MCF-7 cell COX-2 expression and PGE2 production. Pre-adipocyte aromatase expression was 89 % greater following culture in conditioned media (CM) from MCF-7 cells exposed to OB versus N sera (OB-CM and N-CM, respectively), a difference nullified by MCF-7 cell treatment with the COX-2 inhibitor celecoxib. Previous analysis of the sera revealed significantly higher interleukin-6 (IL-6) concentrations in the OB versus N samples. Depletion of IL-6 from the sera neutralized the difference in pre-adipocyte aromatase expression stimulated by OB-CM versus N-CM. Finally, CM from pre-adipocyte/MCF-7 cell co-cultures exposed to OB sera stimulated greater MCF-7 and T47D breast cancer cell ERα activity and proliferation in comparison to N sera. This study indicates that obesity-associated systemic IL-6 indirectly enhances pre-adipocyte aromatase expression via increased breast cancer cell PGE2 production. Investigation regarding the efficacy of a COX-2 inhibitor/aromatase inhibitor combination therapy in the obese postmenopausal patient population is warranted.


Subject(s)
Aromatase/biosynthesis , Breast Neoplasms/genetics , Dinoprostone/biosynthesis , Interleukin-6/genetics , Obesity/genetics , Adipocytes/enzymology , Aromatase Inhibitors/administration & dosage , Breast Neoplasms/complications , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2 Inhibitors/administration & dosage , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/immunology , MCF-7 Cells , Obesity/complications , Obesity/pathology
16.
Nutr Cancer ; 66(7): 1179-86, 2014.
Article in English | MEDLINE | ID: mdl-25264717

ABSTRACT

Obesity is the leading preventable comorbidity associated with increased prostate cancer-related recurrence and mortality. Epidemiological and clinical studies indicate that a body mass index >30 is associated with increased oxidative DNA damage within the prostate gland and increased prostate cancer-related mortality. Here we provide evidence that obesity promotes worse clinical outcome through induction of metabolic abnormalities known to promote genotoxic stress. We have previously reported that blood serum derived from obese mice may enhance the proliferative and invasive potential of human prostate cancer cell lines ex vivo. Here we show that a 1-h exposure of LNCaP or PacMetUT1 prostate cancer cell lines and nonmalignant RWPE-1 prostate epithelial cells to 2% serum from obese mice induces markers of aerobic glycolysis relative to those exposed to serum from nonobese mice. This metabolic change was correlated with accumulation of reactive oxygen species (ROS) and increased frequency of DNA double-strand breaks. Interestingly, N-tert-Butylhydroxylamine, an antioxidant, significantly suppressed markers of aerobic glycolysis in the cells exposed to the blood serum of obese mice, suggesting that ROS contributes to a metabolic shift toward aerobic glycolysis. Here we describe obesity-induced changes in key metabolic markers that impact prostate cancer cell progression and explore the role of antioxidants in ameliorating these effects.


Subject(s)
Glycolysis , Obesity/physiopathology , Prostatic Neoplasms/physiopathology , Animals , Antioxidants/pharmacology , Cell Line, Tumor , DNA Damage/drug effects , Disease Progression , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Hydroxylamines/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Oxidative Stress/drug effects , Pyruvate Kinase/metabolism , Reactive Oxygen Species/metabolism , Reproducibility of Results
17.
Cancer Res ; 74(16): 4446-57, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25125682

ABSTRACT

Obesity is associated with a worse breast cancer prognosis and elevated levels of inflammation, including greater cyclooxygenase-2 (COX-2) expression and activity in adipose-infiltrating macrophages. The product of this enzyme, the proinflammatory eicosanoid prostaglandin E2 (PGE2), stimulates adipose tissue aromatase expression and subsequent estrogen production, which could promote breast cancer progression. This study demonstrates that daily use of a nonsteroidal anti-inflammatory drug (NSAID), which inhibits COX-2 activity, is associated with reduced estrogen receptor α (ERα)-positive breast cancer recurrence in obese and overweight women. Retrospective review of data from ERα-positive patients with an average body mass index of >30 revealed that NSAID users had a 52% lower recurrence rate and a 28-month delay in time to recurrence. To examine the mechanisms that may be mediating this effect, we conducted in vitro studies that utilized sera from obese and normal-weight patients with breast cancer. Exposure to sera from obese patients stimulated greater macrophage COX-2 expression and PGE2 production. This was correlated with enhanced preadipocyte aromatase expression following incubation in conditioned media (CM) collected from the obese-patient, sera-exposed macrophages, an effect neutralized by COX-2 inhibition with celecoxib. In addition, CM from macrophage/preadipocyte cocultures exposed to sera from obese patients stimulated greater breast cancer cell ERα activity, proliferation, and migration compared with sera from normal-weight patients, and these differences were eliminated or reduced by the addition of an aromatase inhibitor during CM generation. Prospective studies designed to examine the clinical benefit of NSAID use in obese patients with breast cancer are warranted.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aromatase/metabolism , Breast Neoplasms/prevention & control , Dinoprostone/metabolism , Neoplasm Recurrence, Local/prevention & control , Obesity/metabolism , Overweight/metabolism , Breast Neoplasms/complications , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Growth Processes/drug effects , Cell Movement/drug effects , Cyclooxygenase 2/metabolism , Disease-Free Survival , Estrogen Receptor alpha/metabolism , Female , Humans , Macrophages/enzymology , Middle Aged , Obesity/complications , Overweight/complications , Retrospective Studies
18.
Biochim Biophys Acta ; 1842(10): 1475-82, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25066474

ABSTRACT

Glycerol-3-phosphate acyltransferase-1 is the first rate limiting step in de novo glycerophospholipid synthesis. We have previously demonstrated that GPAT-1 deletion can significantly alter T cell function resulting in a T cell phenotype similar to that seen in aging. Recent studies have suggested that changes in the metabolic profile of T cells are responsible for defining specific effector functions and T cell subsets. Therefore, we determined whether T cell dysfunction in GPAT-1 (-/-) CD4(+) T cells could be explained by changes in cellular metabolism. We show here for the first time that GPAT-1 (-/-) CD4(+) T cells exhibit several key metabolic defects. Striking decreases in both the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) were observed in GPAT-1 (-/-) CD4(+) T cells following CD3/CD28 stimulation indicating an inherent cellular defect in energy production. In addition, the spare respiratory capacity (SRC) of GPAT-1 (-/-) CD4+ T cells, a key indicator of their ability to cope with mitochondrial stress was significantly decreased. We also observed a significant reduction in mitochondrial membrane potential in GPAT-1 (-/-) CD4(+) T cells compared to their WT counterparts, indicating that GPAT-1 deficiency results in altered or dysfunctional mitochondria. These data demonstrate that deletion of GPAT-1 can dramatically alter total cellular metabolism under conditions of increased energy demand. Furthermore, altered metabolic response following stimulation may be the defining mechanism underlying T cell dysfunction in GPAT-1 (-/-) CD4(+) T cells. Taken together, these results indicate that GPAT-1 is essential for the response to the increased metabolic demands associated with T cell activation.

19.
Breast Cancer Res ; 15(4): R59, 2013.
Article in English | MEDLINE | ID: mdl-23880059

ABSTRACT

INTRODUCTION: Epidemiological and clinical studies indicate that obesity is associated with a worse postmenopausal breast cancer prognosis and an increased risk of endocrine therapy resistance. However, the mechanisms mediating these effects remain poorly understood. Here we investigate the molecular pathways by which obesity-associated circulating factors in the blood enhance estrogen receptor alpha (ERα) positive breast cancer cell viability and growth. METHODS: Blood serum was collected from postmenopausal breast cancer patients and pooled by body mass index (BMI) category (Control: 18.5 to 24.9 kg/m²; Obese: ≥30.0 kg/m²). The effects of patient sera on MCF-7 and T47D breast cancer cell viability and growth were examined by MTT and colony formation assays, respectively. Insulin-like growth factor receptor 1(IGF-1R), Akt, and ERK1/2 activation and genomic ERα activity were assessed to determine their possible contribution to obese patient sera-induced cell viability and growth. To further define the relative contribution of these signaling pathways, cells grown in patient sera were treated with various combinations of ERα, PI3K/Akt and MAPK targeted therapies. Comparisons between cells exposed to different experimental conditions were made using one-way analysis of variance (ANOVA) and Student's t test. RESULTS: Cells grown in media supplemented with obese patient sera displayed greater cell viability and growth as well as IGF-1R, Akt and ERK1/2 activation relative to control sera. Despite the lack of a significant difference in genomic ERα activity following growth in obese versus control patient sera, we observed a dramatic reduction in cell viability and growth after concurrent inhibition of the ERα and PI3K/Akt signaling pathways. Further, we demonstrated that ERα inhibition was sufficient to attenuate obese serum-induced Akt and ERK1/2 activation. Together, these data suggest that obesity promotes greater ERα positive breast cancer cell viability and growth through enhanced crosstalk between nongenomic ERα signaling and the PI3K/Akt and MAPK pathways. CONCLUSIONS: Circulating factors in the serum of obese postmenopausal women stimulate ERα positive breast cancer cell viability and growth by facilitating non-genomic ERα crosstalk with the PI3K/Akt and MAPK signaling pathways. These findings provide valuable insight into one mechanism by which obesity may promote ERα positive postmenopausal breast cancer progression and endocrine therapy resistance.


Subject(s)
Breast Neoplasms/complications , Breast Neoplasms/metabolism , MAP Kinase Signaling System , Obesity/complications , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor Cross-Talk , Receptors, Estrogen/metabolism , Biomarkers/blood , Biomarkers/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Progression , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/metabolism , Female , Humans , Middle Aged , Obesity/blood , Obesity/metabolism , Phosphoinositide-3 Kinase Inhibitors , Receptor, IGF Type 1/metabolism , Receptors, Estrogen/antagonists & inhibitors , Risk Factors
20.
Nutr Cancer ; 65(4): 556-62, 2013.
Article in English | MEDLINE | ID: mdl-23659447

ABSTRACT

Prostate cancer (PCa) is the second leading cause of cancer-related deaths in men. Studies show that consumption of polyunsaturated fatty acids (PUFA) modulates the development and progression of prostate cancer. High amounts of omega-6 fatty acids have been linked with increased prostate cancer risk, whereas omega-3 fatty acids have been shown to inhibit PCa growth. However, because omega-3 and omega-6 are both essential fatty acids and part of a complete diet, it is more relevant to determine the ideal ratio of the two that would allow patients to benefit from the therapeutic properties of omega-3 fatty acids. LNCaP prostate cancer cells were treated with dietary-based ratios of omega-6 to omega-3 fatty acids under hormone-deprivation conditions, and effects on various cellular processes were determined. A low omega-6 to omega-3 PUFA ratio can delay the progression of cells toward castration-resistance by suppressing pathways involved in prostate cancer progression, such as the Akt/mTOR/NFκB axis. It also suppresses the expression of cyclin D1, and activation of caspase-3 and annexin V staining shows induction of proapoptotic events. Taken together, our data demonstrates that maintaining a low omega-6 to omega-3 fatty acids ratio can enhance efficacy of hormone ablation therapy.


Subject(s)
Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-6/pharmacology , Prostatic Neoplasms/diet therapy , Apoptosis/drug effects , Caspase 3/metabolism , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin D1/metabolism , Humans , Male , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/prevention & control , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...