Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 8: 933, 2017.
Article in English | MEDLINE | ID: mdl-28824653

ABSTRACT

The peripheral naive T-cell pool is generally thought to consist of a subpopulation of recent thymic emigrants (RTEs) and a subpopulation of mature naive (MN) T cells with different dynamics. Thymus transplantation and adoptive transfer studies in mice have provided contradicting results, with some studies suggesting that RTEs are relatively short-lived cells, while another study suggested that RTEs have a survival advantage. We here estimate the death rates of RTE and MN T cells by performing both thymus transplantations and deuterium labeling experiments in mice of at least 12 weeks old, an age at which the size of the T-cell pool has stabilized. For CD4+ T cells, we found the total loss rate from the RTE compartment (by death and maturation) to be fourfold faster than that of MN T cells. We estimate the death rate of CD4+ RTE to be 0.046 per day, which is threefold faster than the total loss rate from the MN T-cell compartment. For CD8+ T cells, we found no evidence for kinetic differences between RTE and MN T cells. Thus, our data support the notion that in young adult mice, CD4+ RTE are relatively short-lived cells within the naive CD4+ T-cell pool.

2.
Arthritis Rheumatol ; 68(3): 639-47, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26414917

ABSTRACT

OBJECTIVE: We previously showed that mycobacterial Hsp70-derived peptide B29 induced B29-specific Treg cells that suppressed experimental arthritis in mice via cross-recognition of their mammalian Hsp70 homologs. The aim of the current study was to characterize B29 binding and specific CD4+ T cell responses in the context of human major histocompatibility complex (MHC) molecules. METHODS: Competitive binding assays were performed to examine binding of peptide B29 and its mammalian homologs to HLA molecules. The effect of B29 immunization in HLA-DQ8-transgenic mice with proteoglycan-induced arthritis was assessed, followed by ex vivo restimulation with B29 to examine the T cell response. Human peripheral blood mononuclear cells were used to investigate the presence of B29-specific T cells with immunoregulatory potential. RESULTS: The binding affinity of the B29 peptide was high to moderate for multiple HLA-DR and HLA-DQ molecules, including those highly associated with rheumatoid arthritis. This binding was considered to be functional, because B29 immunization resulted in the suppression of arthritis and T cell responses in HLA-DQ8-transgenic mice. In humans, we demonstrated the presence and expansion of B29-specific CD4+ T cells, which were cross-reactive with the mammalian homologs. Using HLA-DR4+ tetramers specific for B29 or the mammalian homolog mB29b, we showed expansion of cross-reactive T cells, especially the human FoxP3+ CD4+CD25+ T cell population, after in vitro stimulation with B29. CONCLUSION: These results demonstrated a conserved fine specificity and functionality of B29-induced Treg cell responses in the context of the human MHC. Based on these findings, a path for translation of the experimental findings for B29 into a clinical immunomodulatory therapeutic approach is within reach.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , CD4-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , HLA-DQ Antigens/immunology , Major Histocompatibility Complex/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes/immunology , Animals , Binding, Competitive , Cell Separation , Cells, Cultured , Cross Reactions , Enkephalins/immunology , Female , Forkhead Transcription Factors/immunology , Humans , In Vitro Techniques , Integrin beta1/immunology , Interleukin-2 Receptor alpha Subunit/immunology , Mice , Mice, Inbred BALB C , Mice, Transgenic , Protein Precursors/immunology
3.
Blood ; 122(13): 2205-12, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-23945154

ABSTRACT

Quantitative knowledge of the turnover of different leukocyte populations is a key to our understanding of immune function in health and disease. Much progress has been made thanks to the introduction of stable isotope labeling, the state-of-the-art technique for in vivo quantification of cellular life spans. Yet, even leukocyte life span estimates on the basis of stable isotope labeling can vary up to 10-fold among laboratories. We investigated whether these differences could be the result of variances in the length of the labeling period among studies. To this end, we performed deuterated water-labeling experiments in mice, in which only the length of label administration was varied. The resulting life span estimates were indeed dependent on the length of the labeling period when the data were analyzed using a commonly used single-exponential model. We show that multiexponential models provide the necessary tool to obtain life span estimates that are independent of the length of the labeling period. Use of a multiexponential model enabled us to reduce the gap between human T-cell life span estimates from 2 previously published labeling studies. This provides an important step toward unambiguous understanding of leukocyte turnover in health and disease.


Subject(s)
Models, Theoretical , T-Lymphocytes/cytology , Animals , Cell Separation , Deuterium Oxide , Humans , Isotope Labeling/methods , Male , Mice , Mice, Inbred C57BL
4.
Proc Natl Acad Sci U S A ; 109(35): 14134-9, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22891339

ABSTRACT

Reestablishing self-tolerance in autoimmunity is thought to depend on self-reactive regulatory T cells (Tregs). Exploiting these antigen-specific regulators is hampered by the obscure nature of disease-relevant autoantigens. We have uncovered potent disease-suppressive Tregs recognizing Heat Shock Protein (Hsp) 70 self-antigens, enabling selective activity in inflamed tissues. Hsp70 is a major contributor to the MHC class II ligandome. Here we show that a conserved Hsp70 epitope (B29) is present in murine MHC class II and that upon transfer, B29-induced CD4(+)CD25(+)Foxp3(+) T cells suppress established proteoglycan-induced arthritis in mice. These self-antigen-specific Tregs were activated in vivo, and when using Lymphocyte Activation Gene-3 as a selection marker, as few as 4,000 cells sufficed. Furthermore, depletion of transferred Tregs abrogated disease suppression. Transferred cells exhibited a stable phenotype and were found in joints and draining lymph nodes up to 2 mo after transfer. Given that (i) B29 administration by itself suppressed disease, (ii) our findings were made with wild-type (T-cell receptor nontransgenic) Tregs, and (iii) the B29 human homolog is presented by HLA class II, we are nearing translation of antigen-specific Treg activation as a promising intervention for chronic inflammatory diseases.


Subject(s)
Arthritis/immunology , Arthritis/therapy , Epitopes, T-Lymphocyte/immunology , HSP70 Heat-Shock Proteins/pharmacology , Immune Tolerance/immunology , T-Lymphocytes, Regulatory/immunology , Administration, Intranasal , Adoptive Transfer/methods , Animals , Arthritis/metabolism , Autoantigens/immunology , Autoantigens/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/therapy , Autoimmunity/immunology , Epitopes, T-Lymphocyte/metabolism , HSP70 Heat-Shock Proteins/immunology , HSP70 Heat-Shock Proteins/metabolism , Immunization/methods , Immunotherapy, Adoptive/methods , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Stress, Physiological/immunology , T-Lymphocytes, Regulatory/metabolism
5.
Immunity ; 36(2): 288-97, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22365666

ABSTRACT

Parallels between T cell kinetics in mice and men have fueled the idea that a young mouse is a good model system for a young human, and an old mouse, for an elderly human. By combining in vivo kinetic labeling using deuterated water, thymectomy experiments, analysis of T cell receptor excision circles and CD31 expression, and mathematical modeling, we have quantified the contribution of thymus output and peripheral naive T cell division to the maintenance of T cells in mice and men. Aging affected naive T cell maintenance fundamentally differently in mice and men. Whereas the naive T cell pool in mice was almost exclusively sustained by thymus output throughout their lifetime, the maintenance of the adult human naive T cell pool occurred almost exclusively through peripheral T cell division. These findings put constraints on the extrapolation of insights into T cell dynamics from mouse to man and vice versa.


Subject(s)
Aging/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology , Adult , Aging/pathology , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Child , Deuterium , Homeostasis , Humans , Infant, Newborn , Lymphocyte Count , Lymphopenia/immunology , Lymphopenia/pathology , Male , Mice , Mice, Inbred C57BL , Models, Animal , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Species Specificity , T-Lymphocytes/cytology , Thymus Gland/cytology , Young Adult
6.
Blood ; 116(4): 625-7, 2010 Jul 29.
Article in English | MEDLINE | ID: mdl-20410504

ABSTRACT

Neutrophils are essential effector cells of the innate immune response and are indispensable for host defense. Apart from their antimicrobial functions, neutrophils inform and shape subsequent immunity. This immune modulatory functionality might however be considered limited because of their generally accepted short lifespan (< 1 day). In contrast to the previously reported short lifespans acquired by ex vivo labeling or manipulation, we show that in vivo labeling in humans with the use of (2)H(2)O under homeostatic conditions showed an average circulatory neutrophil lifespan of 5.4 days. This lifespan is at least 10 times longer than previously reported and might lead to reappraisal of novel neutrophil functions in health and disease.


Subject(s)
Deuterium/pharmacokinetics , Neutrophils/metabolism , Neutrophils/physiology , Staining and Labeling/methods , Animals , Cell Survival/physiology , Half-Life , Humans , Male , Mice , Mice, Inbred C57BL , Models, Biological , Models, Theoretical , Neutrophils/cytology , Time Factors
7.
Proc Natl Acad Sci U S A ; 105(16): 6115-20, 2008 Apr 22.
Article in English | MEDLINE | ID: mdl-18420820

ABSTRACT

In mice, recent thymic emigrants (RTEs) make up a large part of the naïve T cell pool and have been suggested to be a distinct short-lived pool. In humans, however, the life span and number of RTEs are unknown. Although (2)H(2)O labeling in young mice showed high thymic-dependent daily naïve T cell production, long term up- and down-labeling with (2)H(2)O in human adults revealed a low daily production of naïve T cells. Using mathematical modeling, we estimated human naïve CD4 and CD8 T cell half-lives of 4.2 and 6.5 years, respectively, whereas memory CD4 and CD8 T cells had half-lives of 0.4 and 0.7 year. The estimated half-life of recently produced naïve T cells was much longer than these average half-lives. Thus, our data are incompatible with a substantial short-lived RTE population in human adults and suggest that the few naïve T cells that are newly produced are preferentially incorporated in the peripheral pool.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Movement/immunology , Models, Immunological , Thymus Gland/immunology , Adult , Animals , Body Water/chemistry , Deuterium Oxide/analysis , Granulocytes/immunology , Half-Life , Humans , Isotope Labeling , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...