Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 9(1): 1542, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733464

ABSTRACT

The mupirocin trans-AT polyketide synthase pathway, provides a model system for manipulation of antibiotic biosynthesis. Its final phase involves removal of the tertiary hydroxyl group from pseudomonic acid B, PA-B, producing the fully active PA-A in a complex series of steps. To further clarify requirements for this conversion, we fed extracts containing PA-B to mutants of the producer strain singly deficient in each mup gene. This additionally identified mupM and mupN as required plus the sequence but not enzymic activity of mupL and ruled out need for other mup genes. A plasmid expressing mupLMNOPVCFU + macpE together with a derivative of the producer P. fluorescens strain NCIMB10586 lacking the mup cluster allowed conversion of PA-B to PA-A. MupN converts apo-mAcpE to holo-form while MupM is a mupirocin-resistant isoleucyl tRNA synthase, preventing self-poisoning. Surprisingly, the expression plasmid failed to allow the closely related P. fluorescens strain SBW25 to convert PA-B to PA-A.


Subject(s)
Anti-Bacterial Agents/metabolism , Mupirocin/biosynthesis , Pseudomonas fluorescens/metabolism , Anti-Bacterial Agents/chemistry , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Mupirocin/chemistry , Mutagenesis , Plasmids/genetics , Plasmids/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Polyketides/chemistry , Polyketides/metabolism , Pseudomonas fluorescens/genetics
SELECTION OF CITATIONS
SEARCH DETAIL