Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Neurosci ; 43(48): 8104-8125, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37816598

ABSTRACT

In the brain, microRNAs (miRNAs) are believed to play a role in orchestrating synaptic plasticity at a higher level by acting as an additional mechanism of translational regulation, alongside the mRNA/polysome system. Despite extensive research, our understanding of the specific contribution of individual miRNA to the function of dopaminergic neurons (DAn) remains limited. By performing a dopaminergic-specific miRNA screening, we have identified miR-218 as a critical regulator of DAn activity in male and female mice. We have found that miR-218 is specifically expressed in mesencephalic DAn and is able to promote dopaminergic differentiation of embryonic stem cells and functional maturation of transdifferentiated induced DA neurons. Midbrain-specific deletion of both genes encoding for miR-218 (referred to as miR-218-1 and mir218-2) affects the expression of a cluster of synaptic-related mRNAs and alters the intrinsic excitability of DAn, as it increases instantaneous frequencies of evoked action potentials, reduces rheobase current, affects the ionic current underlying the action potential after hyperpolarization phase, and reduces dopamine efflux in response to a single electrical stimulus. Our findings provide a comprehensive understanding of the involvement of miR-218 in the dopaminergic system and highlight its role as a modulator of dopaminergic transmission.SIGNIFICANCE STATEMENT In the past decade, several miRNAs have emerged as potential regulators of synapse activity through the modulation of specific gene expression. Among these, we have identified a dopaminergic-specific miRNA, miR-218, which is able to promote dopaminergic differentiation and regulates the translation of an entire cluster of synapse related mRNAs. Deletion of miR-218 has notable effects on dopamine release and alters the intrinsic excitability of dopaminergic neurons, indicating a direct control of dopaminergic activity by miR-218.


Subject(s)
Dopamine , MicroRNAs , Mice , Male , Female , Animals , Dopamine/metabolism , Cell Differentiation , Dopaminergic Neurons/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Neurotransmitter Agents/metabolism
2.
Int J Mol Sci ; 23(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35805964

ABSTRACT

The development of midbrain dopaminergic (DA) neurons requires a fine temporal and spatial regulation of a very specific gene expression program. Here, we report that during mouse brain development, the microRNA (miR-) 204/211 is present at a high level in a subset of DA precursors expressing the transcription factor Lmx1a, an early determinant for DA-commitment, but not in more mature neurons expressing Th or Pitx3. By combining different in vitro model systems of DA differentiation, we show that the levels of Lmx1a influence the expression of miR-204/211. Using published transcriptomic data, we found a significant enrichment of miR-204/211 target genes in midbrain dopaminergic neurons where Lmx1a was selectively deleted at embryonic stages. We further demonstrated that miR-204/211 controls the timing of the DA differentiation by directly downregulating the expression of Nurr1, a late DA differentiation master gene. Thus, our data indicate the Lmx1a-miR-204/211-Nurr1 axis as a key component in the cascade of events that ultimately lead to mature midbrain dopaminergic neurons differentiation and point to miR-204/211 as the molecular switch regulating the timing of Nurr1 expression.


Subject(s)
Dopaminergic Neurons , LIM-Homeodomain Proteins , MicroRNAs , Nuclear Receptor Subfamily 4, Group A, Member 2 , Animals , Cell Differentiation/physiology , Dopamine/metabolism , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Mesencephalon/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Rev Neurosci ; 33(7): 789-801, 2022 10 26.
Article in English | MEDLINE | ID: mdl-35325516

ABSTRACT

In a million years, under the pressure of natural selection, hominins have acquired the abilities for vocal learning, music, and language. Music is a relevant human activity, highly effective in enhancing sociality, is a universal experience common to all known human cultures, although it varies in rhythmic and melodic complexity. It has been part of human life since the beginning of our history, or almost, and it strengthens the mother-baby relation even within the mother's womb. Music engages multiple cognitive functions, and promotes attention, concentration, imagination, creativity, elicits memories and emotions, and stimulates imagination, and harmony of movement. It changes the chemistry of the brain, by inducing the release of neurotransmitters and hormones (dopamine, serotonin, and oxytocin) and activates the reward and prosocial systems. In addition, music is also used to develop new therapies necessary to alleviate severe illness, especially neurological disorders, and brain injuries.


Subject(s)
Music , Nervous System Diseases , Brain/physiology , Dopamine , Humans , Nervous System Diseases/therapy , Oxytocin , Serotonin
4.
Cells ; 10(4)2021 03 26.
Article in English | MEDLINE | ID: mdl-33810328

ABSTRACT

Dopamine (DA) is a key neurotransmitter involved in multiple physiological functions including motor control, modulation of affective and emotional states, reward mechanisms, reinforcement of behavior, and selected higher cognitive functions. Dysfunction in dopaminergic transmission is recognized as a core alteration in several devastating neurological and psychiatric disorders, including Parkinson's disease (PD), schizophrenia, bipolar disorder, attention deficit hyperactivity disorder (ADHD) and addiction. Here we will discuss the current insights on the role of DA in motor control and reward learning mechanisms and its involvement in the modulation of synaptic dynamics through different pathways. In particular, we will consider the role of DA as neuromodulator of two forms of synaptic plasticity, known as long-term potentiation (LTP) and long-term depression (LTD) in several cortical and subcortical areas. Finally, we will delineate how the effect of DA on dendritic spines places this molecule at the interface between the motor and the cognitive systems. Specifically, we will be focusing on PD, vascular dementia, and schizophrenia.


Subject(s)
Dopamine/metabolism , Movement , Neuronal Plasticity , Neurotransmitter Agents/metabolism , Reward , Animals , Cognition/physiology , Humans
5.
Rev Neurosci ; 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32924383

ABSTRACT

The environment increased complexity required more neural functions to develop in the hominin brains, and the hominins adapted to the complexity by developing a bigger brain with a greater interconnection between its parts. Thus, complex environments drove the growth of the brain. In about two million years during hominin evolution, the brain increased three folds in size, one of the largest and most complex amongst mammals, relative to body size. The size increase has led to anatomical reorganization and complex neuronal interactions in a relatively small skull. At birth, the human brain is only about 20% of its adult size. That facilitates the passage through the birth canal. Therefore, the human brain, especially cortex, develops postnatally in a rich stimulating environment with continuous brain wiring and rewiring and insertion of billions of new neurons. One of the consequence is that in the newborn brain, neuroplasticity is always turned "on" and it remains active throughout life, which gave humans the ability to adapt to complex and often hostile environments, integrate external experiences, solve problems, elaborate abstract ideas and innovative technologies, store a lot of information. Besides, hominins acquired unique abilities as music, language, and intense social cooperation. Overwhelming ecological, social, and cultural challenges have made the human brain so unique. From these events, as well as the molecular genetic changes that took place in those million years, under the pressure of natural selection, derive the distinctive cognitive abilities that have led us to complex social organizations and made our species successful.

6.
Int J Mol Sci ; 21(11)2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32503161

ABSTRACT

The relatively few dopaminergic neurons in the mammalian brain are mostly located in the midbrain and regulate many important neural functions, including motor integration, cognition, emotive behaviors and reward. Therefore, alteration of their function or degeneration leads to severe neurological and neuropsychiatric diseases. Unraveling the mechanisms of midbrain dopaminergic (mDA) phenotype induction and maturation and elucidating the role of the gene network involved in the development and maintenance of these neurons is of pivotal importance to rescue or substitute these cells in order to restore dopaminergic functions. Recently, in addition to morphogens and transcription factors, microRNAs have been identified as critical players to confer mDA identity. The elucidation of the gene network involved in mDA neuron development and function will be crucial to identify early changes of mDA neurons that occur in pre-symptomatic pathological conditions, such as Parkinson's disease. In addition, it can help to identify targets for new therapies and for cell reprogramming into mDA neurons. In this essay, we review the cascade of transcriptional and posttranscriptional regulation that confers mDA identity and regulates their functions. Additionally, we highlight certain mechanisms that offer important clues to unveil molecular pathogenesis of mDA neuron dysfunction and potential pharmacological targets for the treatment of mDA neuron dysfunction.


Subject(s)
Dopamine/metabolism , Dopaminergic Neurons/metabolism , Neurodegenerative Diseases/metabolism , Animals , Brain/metabolism , Cell Differentiation , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Developmental , Humans , Mesencephalon/metabolism , Mesencephalon/pathology , MicroRNAs/metabolism , Neurodegenerative Diseases/drug therapy , Neurogenesis/genetics , Parkinson Disease/pathology , Phenotype , Regenerative Medicine , Transcription Factors/metabolism
7.
PLoS One ; 15(5): e0233918, 2020.
Article in English | MEDLINE | ID: mdl-32442206

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0030661.].

8.
Stem Cell Reports ; 10(4): 1237-1250, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29526736

ABSTRACT

The differentiation of dopaminergic neurons requires concerted action of morphogens and transcription factors acting in a precise and well-defined time window. Very little is known about the potential role of microRNA in these events. By performing a microRNA-mRNA paired microarray screening, we identified miR-34b/c among the most upregulated microRNAs during dopaminergic differentiation. Interestingly, miR-34b/c modulates Wnt1 expression, promotes cell cycle exit, and induces dopaminergic differentiation. When combined with transcription factors ASCL1 and NURR1, miR-34b/c doubled the yield of transdifferentiated fibroblasts into dopaminergic neurons. Induced dopaminergic (iDA) cells synthesize dopamine and show spontaneous electrical activity, reversibly blocked by tetrodotoxin, consistent with the electrophysiological properties featured by brain dopaminergic neurons. Our findings point to a role for miR-34b/c in neuronal commitment and highlight the potential of exploiting its synergy with key transcription factors in enhancing in vitro generation of dopaminergic neurons.


Subject(s)
Cell Differentiation , Dopaminergic Neurons/cytology , Mesencephalon/cytology , MicroRNAs/metabolism , Wnt1 Protein/metabolism , Animals , Base Sequence , Cell Transdifferentiation , Dopaminergic Neurons/metabolism , Fibroblasts/cytology , Gene Expression Regulation , Germ Layers/cytology , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/metabolism , Mice , MicroRNAs/genetics , Neurogenesis/genetics , Transcription Factors/metabolism , Wnt Signaling Pathway
9.
Behav Brain Res ; 336: 256-260, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28899819

ABSTRACT

Dendritic spines, small protrusions emerging from the dendrites of most excitatory synapses in the mammalian brain, are highly dynamic structures and their shape and number is continuously modulated by memory formation and other adaptive changes of the brain. In this study, using a behavioral paradigm of motor learning, we applied the non-linear analysis of dendritic spines to study spine complexity along dendrites of cortical and subcortical neural systems, such as the basal ganglia, that sustain important motor learning processes. We show that, after learning, the spine organization has greater complexity, as indexed by the maximum Lyapunov exponent (LyE). The positive value of the exponent demonstrates that the system is chaotic, while recurrence plots show that the system is not simply composed by random noise, but displays quasi-periodic behavior. The increase in the maximum LyE and in the system entropy after learning was confirmed by the modification of the reconstructed trajectories in phase-space. Our results suggest that the remodeling of spines, as a result of a chaotic and non-random dynamical process along dendrites, may be a general feature associated with the structural plasticity underlying processes such as long-term memory maintenance. Furthermore, this work indicates that the non-linear method is a very useful tool to allow the detection of subtle stimulus-induced changes in dendritic spine dynamics, giving a key contribution to the study of the relationship between structure and function of spines.


Subject(s)
Dendritic Spines/physiology , Learning/physiology , Animals , Brain/physiology , Dendrites/physiology , Male , Memory, Long-Term/physiology , Mice , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Synapses/physiology
10.
J Neurochem ; 141(5): 647-661, 2017 06.
Article in English | MEDLINE | ID: mdl-28122114

ABSTRACT

Precise control of dendritic spine density and synapse formation is critical for normal and pathological brain functions. Therefore, signaling pathways influencing dendrite outgrowth and remodeling remain a subject of extensive investigations. Here, we report that prolonged activation of the serotonin 5-HT7 receptor (5-HT7R) with selective agonist LP-211 promotes formation of dendritic spines and facilitates synaptogenesis in postnatal cortical and striatal neurons. Critical role of 5-HT7R in neuronal morphogenesis was confirmed by analysis of neurons isolated from 5-HT7R-deficient mice and by pharmacological inactivation of the receptor. Acute activation of 5-HT7R results in pronounced neurite elongation in postnatal striatal and cortical neurons, thus extending previous data on the morphogenic role of 5-HT7R in embryonic and hippocampal neurons. We also observed decreased number of spines in neurons with either genetically (i.e. 5-HT7R-knock-out) or pharmacologically (i.e. antagonist treatment) blocked 5-HT7R, suggesting that constitutive 5-HT7R activity is critically involved in the spinogenesis. Moreover, cyclin-dependent kinase 5 and small GTPase Cdc42 were identified as important downstream effectors mediating morphogenic effects of 5-HT7R in neurons. Altogether, our data suggest that the 5-HT7R-mediated structural reorganization during the postnatal development might have a crucial role for the development and plasticity of forebrain areas such as cortex and striatum, and thereby can be implicated in regulation of the higher cognitive functions. Read the Editorial Highlight for this article on page 644.


Subject(s)
Cerebral Cortex/cytology , Corpus Striatum/cytology , Dendritic Spines/metabolism , Neurogenesis/genetics , Neurons/cytology , Receptors, Serotonin/metabolism , Synapses/genetics , Animals , Animals, Newborn , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cells, Cultured , Dendritic Spines/drug effects , Diterpenes , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Net/drug effects , Nerve Net/physiology , Neurogenesis/drug effects , Neurons/drug effects , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Receptors, Serotonin/genetics , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Synapses/drug effects , Time Factors
11.
Rev Neurosci ; 28(3): 235-245, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28107174

ABSTRACT

Music is a universal language, present in all human societies. It pervades the lives of most human beings and can recall memories and feelings of the past, can exert positive effects on our mood, can be strongly evocative and ignite intense emotions, and can establish or strengthen social bonds. In this review, we summarize the research and recent progress on the origins and neural substrates of human musicality as well as the changes in brain plasticity elicited by listening or performing music. Indeed, music improves performance in a number of cognitive tasks and may have beneficial effects on diseased brains. The emerging picture begins to unravel how and why particular brain circuits are affected by music. Numerous studies show that music affects emotions and mood, as it is strongly associated with the brain's reward system. We can therefore assume that an in-depth study of the relationship between music and the brain may help to shed light on how the mind works and how the emotions arise and may improve the methods of music-based rehabilitation for people with neurological disorders. However, many facets of the mind-music connection still remain to be explored and enlightened.


Subject(s)
Auditory Perception/physiology , Brain/physiology , Emotions/physiology , Music , Reward , Animals , Humans , Mental Recall/physiology , Nervous System Diseases/physiopathology
12.
Front Hum Neurosci ; 10: 265, 2016.
Article in English | MEDLINE | ID: mdl-27375460

ABSTRACT

Functional magnetic resonance imaging (fMRI) provides a powerful way to visualize brain functions and observe brain activity in response to tasks or thoughts. It allows displaying brain damages that can be quantified and linked to neurobehavioral deficits. fMRI can potentially draw a new cartography of brain functional areas, allow us to understand aspects of brain function evolution or even breach the wall into cognition and consciousness. However, fMRI is not deprived of pitfalls, such as limitation in spatial resolution, poor reproducibility, different time scales of fMRI measurements and neuron action potentials, low statistical values. Thus, caution is needed in the assessment of fMRI results and conclusions. Additional diagnostic techniques based on MRI such as arterial spin labeling (ASL) and the measurement of diffusion tensor imaging (DTI) provide new tools to assess normal brain development or disruption of anatomical networks in diseases. A cutting edge of recent research uses fMRI techniques to establish a "map" of neural connections in the brain, or "connectome". It will help to develop a map of neural connections and thus understand the operation of the network. New applications combining fMRI and real time visualization of one's own brain activity (rtfMRI) could empower individuals to modify brain response and thus could enable researchers or institutions to intervene in the modification of an individual behavior. The latter in particular, as well as the concern about the confidentiality and storage of sensitive information or fMRI and lie detectors forensic use, raises new ethical questions.

13.
Front Behav Neurosci ; 9: 62, 2015.
Article in English | MEDLINE | ID: mdl-25814944

ABSTRACT

Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development.

14.
PLoS One ; 9(10): e109671, 2014.
Article in English | MEDLINE | ID: mdl-25350132

ABSTRACT

Estrogens promote a plethora of effects in the CNS that profoundly affect both its development and mature functions and are able to influence proliferation, differentiation, survival and neurotransmission. The biological effects of estrogens are cell-context specific and also depend on differentiation and/or proliferation status in a given cell type. Furthermore, estrogens activate ERK1/2 in a variety of cellular types. Here, we investigated whether ERK1/2 activation might be influenced by estrogens stimulation according to the differentiation status and the molecular mechanisms underling this phenomenon. ERK1/2 exert an opposing role on survival and death, as well as on proliferation and differentiation depending on different kinetics of phosphorylation. Hence we report that mesencephalic primary cultures and the immortalized cell line mes-c-myc A1 express estrogen receptor α and activate ERK1/2 upon E2 stimulation. Interestingly, following the arrest of proliferation and the onset of differentiation, we observe a change in the kinetic of ERKs phosphorylation induced by estrogens stimulation. Moreover, caveolin-1, a main constituent of caveolae, endogenously expressed and co-localized with ER-α on plasma membrane, is consistently up-regulated following differentiation and cell growth arrest. In addition, we demonstrate that siRNA-induced caveolin-1 down-regulation or disruption by means of ß-cyclodextrin treatment changes ERK1/2 phosphorylation in response to estrogens stimulation. Finally, caveolin-1 down-regulation abolishes estrogens-dependent survival of neurons. Thus, caveolin-1 appears to be an important player in mediating, at least, some of the non-genomic action of estrogens in neurons, in particular ERK1/2 kinetics of activation and survival.


Subject(s)
Caveolin 1/metabolism , Cell Differentiation , Estrogens/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neurons/cytology , Neurons/metabolism , Animals , Caveolin 1/genetics , Cell Line , Cell Membrane/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Estrogen Receptor alpha/metabolism , Estrogens/pharmacology , Gene Expression , Gene Silencing , Mice , Neurons/drug effects , Phosphorylation , Protein Binding , Protein Transport , beta-Cyclodextrins/pharmacology
15.
Front Behav Neurosci ; 8: 318, 2014.
Article in English | MEDLINE | ID: mdl-25309369

ABSTRACT

Serotonin (5-hydroxytryptamine, 5-HT) modulates numerous physiological processes in the nervous system. Together with its function as neurotransmitter, 5-HT regulates neurite outgrowth, dendritic spine shape and density, growth cone motility and synapse formation during development. In the mammalian brain 5-HT innervation is virtually ubiquitous and the diversity and specificity of its signaling and function arise from at least 20 different receptors, grouped in 7 classes. Here we will focus on the role 5-HT7 receptor (5-HT7R) in the correct establishment of neuronal cytoarchitecture during development, as also suggested by its involvement in several neurodevelopmental disorders. The emerging picture shows that this receptor is a key player contributing not only to shape brain networks during development but also to remodel neuronal wiring in the mature brain, thus controlling cognitive and emotional responses. The activation of 5-HT7R might be one of the mechanisms underlying the ability of the CNS to respond to different stimuli by modulation of its circuit configuration.

16.
Nat Commun ; 4: 2956, 2013.
Article in English | MEDLINE | ID: mdl-24356439

ABSTRACT

Glioblastoma (GBM) is the most common and deadly malignant brain cancer, with a median survival of <2 years. GBM displays a cellular complexity that includes brain tumour-initiating cells (BTICs), which are considered as potential key targets for GBM therapies. Here we show that the transcription factors FOXG1 and Groucho/TLE are expressed in poorly differentiated astroglial cells in human GBM specimens and in primary cultures of GBM-derived BTICs, where they form a complex. FOXG1 knockdown in BTICs causes downregulation of neural stem/progenitor and proliferation markers, increased replicative senescence, upregulation of astroglial differentiation genes and decreased BTIC-initiated tumour growth after intracranial transplantation into host mice. These effects are phenocopied by Groucho/TLE knockdown or dominant inhibition of the FOXG1:Groucho/TLE complex. These results provide evidence that transcriptional programmes regulated by FOXG1 and Groucho/TLE are important for BTIC-initiated brain tumour growth, implicating FOXG1 and Groucho/TLE in GBM tumourigenesis.


Subject(s)
Brain Neoplasms/metabolism , Forkhead Transcription Factors/physiology , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Nerve Tissue Proteins/physiology , Transcription Factors/physiology , Animals , Astrocytes/metabolism , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Co-Repressor Proteins , Gene Silencing , HEK293 Cells , Humans , Immunohistochemistry , Male , Mice , Mice, SCID , Microscopy, Fluorescence , Neoplasm Transplantation , Oligonucleotide Array Sequence Analysis , Prognosis , Tumor Cells, Cultured
17.
Neurosci Lett ; 548: 38-43, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-23769733

ABSTRACT

Brain serotonin (5-HT) systems modulate emotional, motivational and cognitive processes. Mutations in the serotonin transporter (SERT) gene have been associated with susceptibility towards the development of several psychiatric disorders, both in humans and animal models. Present approach exploited a bilateral intra-hippocampus stereotaxic inoculation of lentiviruses, for enduring in vivo silencing of SERT. Control rats were bilaterally inoculated with heat-inactivated lentiviruses. These Lenti-SERT vectors were intended to eventually manipulate the neurotransmitter reuptake at synaptic level, thus enhancing tonic 5-HT transmission. We investigated whether such manipulation could induce behavioural alterations relevant to the modelling of ADHD, in particular symptoms of hyperactivity and impulsivity. Wistar rats were monitored for spontaneous home-cage locomotor activity and studied for impulsivity (Intolerance-to-Delay task). Results show that rats inoculated with Lenti-SERT vectors exhibited less pronounced circadian peaks of activity than controls. Moreover, Lenti-SERT compared to control rats exhibited a transient increase in choice for a delayed-larger reward over an immediate-small reward. This suggests that enhanced hippocampal serotonergic transmission produced a profile of restfulness and a decrease in cognitive impulsivity. This phenotype is consistent with available data both on 5-HT manipulations and hippocampal lesions. In conclusion, present findings may possibly disclose novel avenues towards the development of innovative therapeutical approaches for behavioural symptoms relevant to ADHD.


Subject(s)
Behavior, Animal , Hippocampus/physiopathology , Impulsive Behavior/physiopathology , Lentivirus/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin/metabolism , Transduction, Genetic/methods , Animals , Circadian Rhythm , Environment , Gene Silencing , Genetic Vectors/genetics , Housing , Impulsive Behavior/prevention & control , Male , Rats , Rats, Wistar , Serotonin Plasma Membrane Transport Proteins/genetics
18.
FASEB J ; 27(3): 865-70, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23230282

ABSTRACT

The brain is the most cholesterol-enriched tissue in the body. During brain development, desmosterol, an immediate precursor of cholesterol, transiently accumulates up to 30% of total brain sterols. This massive desmosterol deposition appears to be present in all mammalian species reported so far, including humans, but how it is achieved is not well understood. Here, we propose that desmosterol accumulation in the developing brain may be primarily caused by post-transcriptional repression of 3ß-hydroxysterol 24-reductase (DHCR24) by progesterone. Furthermore, distinct properties of desmosterol may serve to increase the membrane active pool of sterols in the brain: desmosterol cannot be hydroxylated to generate 24S-hydroxycholesterol, a brain derived secretory sterol, desmosterol has a reduced propensity to be esterified as compared to cholesterol, and desmosterol may activate LXR to stimulate astrocyte sterol secretion. This regulated accumulation of desmosterol by progesterone-induced suppression of DHCR24 may facilitate the rapid enrichment and distribution of membrane sterols in the developing brain.


Subject(s)
Brain Chemistry/physiology , Brain/growth & development , Desmosterol/metabolism , Animals , Brain/cytology , Brain/metabolism , Cell Membrane/metabolism , Liver X Receptors , Mice , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/metabolism , Orphan Nuclear Receptors/metabolism , Oxidoreductases Acting on CH-CH Group Donors/biosynthesis , Progesterone/metabolism
19.
J Neurochem ; 124(2): 159-67, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23134340

ABSTRACT

Research on stem cells has developed as one of the most promising areas of neurobiology. In the beginning of the 1990s, neurogenesis in the adult brain was indisputably accepted, eliciting great research efforts. Neural stem cells in the adult mammalian brain are located in the 'neurogenic' areas of the subventricular and subgranular zones. Nevertheless, many reports indicate that they subsist in other regions of the adult brain. Adult neural stem cells have arisen considerable interest as these studies can be useful to develop new methods to replace damaged neurons and treat severe neurological diseases such as neurodegeneration, stroke or spinal cord lesions. In particular, a promising field is aimed at stimulating or trigger a self-repair system in the diseased brain driven by its own stem cell population. Here, we will revise the latest findings on the characterization of active and quiescent adult neural stem cells in the main regions of neurogenesis and the factors necessary to maintain their active and resting states, stimulate migration and homing in diseased areas, hoping to outline the emerging knowledge for the promotion of regeneration in the brain based on endogenous stem cells.


Subject(s)
Adult Stem Cells/physiology , Brain Diseases/pathology , Brain Diseases/therapy , Neural Stem Cells/physiology , Adult Stem Cells/pathology , Animals , Brain Diseases/physiopathology , Humans , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Nerve Degeneration/therapy , Nerve Regeneration/physiology , Neural Stem Cells/pathology
20.
PLoS One ; 7(2): e30661, 2012.
Article in English | MEDLINE | ID: mdl-22363463

ABSTRACT

Due to their correlation with major human neurological diseases, dopaminergic neurons are some of the most studied neuronal subtypes. Mesencephalic dopaminergic (mDA) differentiation requires the activation of a cascade of transcription factors, among which play a crucial role the nuclear receptor Nurr1 and the paired-like homeodomain 3, Pitx3. During development the expression of Nurr1 precedes that of Pitx3 and those of typical dopaminergic markers such as tyrosine hydroxylase (TH) and dopamine Transporter (DAT) that are directly regulated by Nurr1. Interestingly we have previously demonstrated that Nurr1 RNA silencing reduced Pitx3 transcripts, leading to the hypothesis that Nurr1 may control Pitx3 expression.Here we show that Nurr1 overexpression up-regulates that of Pitx3 in a dose-dependent manner by binding to a non-canonical NBRE consensus sequence, located at the 5' site of the gene. Interestingly, this sequence shows the same effect as the canonical one in promoting gene translation, and its deletion abolishes the ability of Nurr1 to sustain reporter gene expression. Moreover, we show that there is a direct interaction between Nurr1 and the Pitx3 gene promoter in dopaminergic cell cultures and midbrain embryonic tissue. Altogether, our results suggest that the regulation of Pitx3 by Nurr1 may be an essential event controlling the development and function of mDA neurons.


Subject(s)
Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Mesencephalon/growth & development , Mesencephalon/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Transcription Factors/genetics , Animals , Base Sequence , Cells, Cultured , HeLa Cells , Homeodomain Proteins/metabolism , Humans , Mice , Molecular Sequence Data , Promoter Regions, Genetic/genetics , Protein Binding , Transcription Factors/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL