Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3199, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615009

ABSTRACT

The increasing availability of experimental and computational protein structures entices their use for function prediction. Here we develop an automated procedure to identify enzymes involved in metabolic reactions by assessing substrate conformations docked to a library of protein structures. By screening AlphaFold-modeled vitamin B6-dependent enzymes, we find that a metric based on catalytically favorable conformations at the enzyme active site performs best (AUROC Score=0.84) in identifying genes associated with known reactions. Applying this procedure, we identify the mammalian gene encoding hydroxytrimethyllysine aldolase (HTMLA), the second enzyme of carnitine biosynthesis. Upon experimental validation, we find that the top-ranked candidates, serine hydroxymethyl transferase (SHMT) 1 and 2, catalyze the HTMLA reaction. However, a mouse protein absent in humans (threonine aldolase; Tha1) catalyzes the reaction more efficiently. Tha1 did not rank highest based on the AlphaFold model, but its rank improved to second place using the experimental crystal structure we determined at 2.26 Å resolution. Our findings suggest that humans have lost a gene involved in carnitine biosynthesis, with HTMLA activity of SHMT partially compensating for its function.


Subject(s)
Aldehyde-Lyases , Fructose-Bisphosphate Aldolase , Humans , Animals , Mice , Fructose-Bisphosphate Aldolase/genetics , Catalysis , Gene Library , Glycine Hydroxymethyltransferase/genetics , Carnitine , Mammals
2.
Protein Sci ; 33(2): e4900, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38284493

ABSTRACT

Adequate levels of pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6 , and its proper distribution in the body are essential for human health. The PLP recycling pathway plays a crucial role in these processes and its defects cause severe neurological diseases. The enzyme pyridox(am)ine 5'-phosphate oxidase (PNPO), whose catalytic action yields PLP, is one of the key players in this pathway. Mutations in the gene encoding PNPO are responsible for a severe form of neonatal epilepsy. Recently, PNPO has also been described as a potential target for chemotherapeutic agents. Our laboratory has highlighted the crucial role of PNPO in the regulation of PLP levels in the cell, which occurs via a feedback inhibition mechanism of the enzyme, exerted by binding of PLP at an allosteric site. Through docking analyses and site-directed mutagenesis experiments, here we identified the allosteric PLP binding site of human PNPO. This site is located in the same protein region as the allosteric site we previously identified in the Escherichia coli enzyme homologue. However, the identity and arrangement of the amino acid residues involved in PLP binding are completely different and resemble those of the active site of PLP-dependent enzymes. The identification of the PLP allosteric site of human PNPO paves the way for the rational design of enzyme inhibitors as potential anti-cancer compounds.


Subject(s)
Oxidoreductases , Pyridoxaminephosphate Oxidase , Humans , Allosteric Site , Oxidoreductases/metabolism , Phosphates , Pyridoxal Phosphate/metabolism , Pyridoxaminephosphate Oxidase/genetics , Pyridoxaminephosphate Oxidase/metabolism
3.
FEBS J ; 290(23): 5628-5651, 2023 12.
Article in English | MEDLINE | ID: mdl-37734924

ABSTRACT

Pyridoxine 4-dehydrogenase (PdxI), a NADPH-dependent pyridoxal reductase, is one of the key players in the Escherichia coli pyridoxal 5'-phosphate (PLP) salvage pathway. This enzyme, which catalyses the reduction of pyridoxal into pyridoxine, causes pyridoxal to be converted into PLP via the formation of pyridoxine and pyridoxine phosphate. The structural and functional properties of PdxI were hitherto unknown, preventing a rational explanation of how and why this longer, detoured pathway occurs, given that, in E. coli, two pyridoxal kinases (PdxK and PdxY) exist that could convert pyridoxal directly into PLP. Here, we report a detailed characterisation of E. coli PdxI that explains this behaviour. The enzyme efficiently catalyses the reversible transformation of pyridoxal into pyridoxine, although the reduction direction is thermodynamically strongly favoured, following a compulsory-order ternary-complex mechanism. In vitro, the enzyme is also able to catalyse PLP reduction and use NADH as an electron donor, although with lower efficiency. As with all members of the aldo-keto reductase (AKR) superfamily, the enzyme has a TIM barrel fold; however, it shows some specific features, the most important of which is the presence of an Arg residue that replaces the catalytic tetrad His residue that is present in all AKRs and appears to be involved in substrate specificity. The above results, in conjunction with kinetic and static measurements of vitamins B6 in cell extracts of E. coli wild-type and knockout strains, shed light on the role of PdxI and both kinases in determining the pathway followed by pyridoxal in its conversion to PLP, which has a precise regulatory function.


Subject(s)
Pyridoxine , Vitamin B 6 , Vitamin B 6/chemistry , Pyridoxine/metabolism , Escherichia coli/metabolism , Pyridoxal Phosphate/metabolism , Pyridoxal/metabolism
4.
Nucleic Acids Res ; 51(15): 8237-8254, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37378428

ABSTRACT

Specificity in protein-DNA recognition arises from the synergy of several factors that stem from the structural and chemical signatures encoded within the targeted DNA molecule. Here, we deciphered the nature of the interactions driving DNA recognition and binding by the bacterial transcription factor PdxR, a member of the MocR family responsible for the regulation of pyridoxal 5'-phosphate (PLP) biosynthesis. Single particle cryo-EM performed on the PLP-PdxR bound to its target DNA enabled the isolation of three conformers of the complex, which may be considered as snapshots of the binding process. Moreover, the resolution of an apo-PdxR crystallographic structure provided a detailed description of the transition of the effector domain to the holo-PdxR form triggered by the binding of the PLP effector molecule. Binding analyses of mutated DNA sequences using both wild type and PdxR variants revealed a central role of electrostatic interactions and of the intrinsic asymmetric bending of the DNA in allosterically guiding the holo-PdxR-DNA recognition process, from the first encounter through the fully bound state. Our results detail the structure and dynamics of the PdxR-DNA complex, clarifying the mechanism governing the DNA-binding mode of the holo-PdxR and the regulation features of the MocR family of transcription factors.


Subject(s)
Bacterial Proteins , Transcription Factors , Bacteria/genetics , Bacterial Proteins/metabolism , DNA/metabolism , Protein Binding , Pyridoxal Phosphate/metabolism , Transcription Factors/metabolism , Bacillus clausii/genetics
5.
Insects ; 13(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36555019

ABSTRACT

Insecticide resistance is a major threat challenging the control of harmful insect species. The study of resistant phenotypes is, therefore, pivotal to understand molecular mechanisms underpinning insecticide resistance and plan effective control and resistance management strategies. Here, we further analysed the diflubenzuron (DFB)-resistant phenotype due to the point-mutation I1043M in the chitin-synthase 1 gene (chs1) in the mosquito Culex pipiens. By comparing susceptible and resistant strains of Cx. pipiens through DFB bioassays, molecular analyses and scanning electron microscopy, we showed that the I1043M-resistant mosquitoes have: (i) a striking level of DFB resistance (i.e., resistance ratio: 9006); (ii) a constitutive 11-fold over-expression of the chs1 gene; (iii) enhanced cuticle thickness and cuticular chitin content. Culex pipiens is one of the most important vector species in Europe and the rapid spread of DFB resistance can threaten its control. Our results, by adding new data about the DFB-resistant phenotype, provide important information for the control and management of insecticide resistance.

6.
Protein Sci ; 31(11): e4471, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36218140

ABSTRACT

The pyridoxal 5'-phosphate (PLP) homeostasis protein (PLPHP) is a ubiquitous member of the COG0325 family with apparently no catalytic activity. Although the actual cellular role of this protein is unknown, it has been observed that mutations of the PLPHP encoding gene affect the activity of PLP-dependent enzymes, B6 vitamers and amino acid levels. Here we report a detailed characterization of the Escherichia coli ortholog of PLPHP (YggS) with respect to its PLP binding and transfer properties, stability, and structure. YggS binds PLP very tightly and is able to slowly transfer it to a model PLP-dependent enzyme, serine hydroxymethyltransferase. PLP binding to YggS elicits a conformational/flexibility change in the protein structure that is detectable in solution but not in crystals. We serendipitously discovered that the K36A variant of YggS, affecting the lysine residue that binds PLP at the active site, is able to bind PLP covalently. This observation led us to recognize that a number of lysine residues, located at the entrance of the active site, can replace Lys36 in its PLP binding role. These lysines form a cluster of charged residues that affect protein stability and conformation, playing an important role in PLP binding and possibly in YggS function.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Lysine/metabolism , Pyridoxal Phosphate , Proteins/chemistry , Protein Stability , Homeostasis , Phosphates/metabolism , Carrier Proteins/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
7.
J Biol Chem ; 296: 100795, 2021.
Article in English | MEDLINE | ID: mdl-34019876

ABSTRACT

Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, plays a pivotal role in metabolism as an enzyme cofactor. PLP is a very reactive molecule and can be very toxic unless its intracellular concentration is finely regulated. In Escherichia coli, PLP formation is catalyzed by pyridoxine 5'-phosphate oxidase (PNPO), a homodimeric FMN-dependent enzyme that is responsible for the last step of PLP biosynthesis and is also involved in the PLP salvage pathway. We have recently observed that E. coli PNPO undergoes an allosteric feedback inhibition by PLP, caused by a strong allosteric coupling between PLP binding at the allosteric site and substrate binding at the active site. Here we report the crystallographic identification of the PLP allosteric site, located at the interface between the enzyme subunits and mainly circumscribed by three arginine residues (Arg23, Arg24, and Arg215) that form an "arginine cage" and efficiently trap PLP. The crystal structure of the PNPO-PLP complex, characterized by a marked structural asymmetry, presents only one PLP molecule bound at the allosteric site of one monomer and sheds light on the allosteric inhibition mechanism that makes the enzyme-substrate-PLP ternary complex catalytically incompetent. Site-directed mutagenesis studies focused on the arginine cage validate the identity of the allosteric site and provide an effective means to modulate the allosteric properties of the enzyme, from the loosening of the allosteric coupling (in the R23L/R24L and R23L/R215L variants) to the complete loss of allosteric properties (in the R23L/R24L/R21L variant).


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Pyridoxal Phosphate/metabolism , Pyridoxaminephosphate Oxidase/metabolism , Allosteric Site , Crystallography, X-Ray , Escherichia coli/chemistry , Escherichia coli Infections/microbiology , Escherichia coli Proteins/chemistry , Humans , Models, Molecular , Protein Conformation , Pyridoxaminephosphate Oxidase/chemistry
8.
Chembiochem ; 21(24): 3525-3538, 2020 12 11.
Article in English | MEDLINE | ID: mdl-32734669

ABSTRACT

In the last decades, it has become clear that the canonical amino acid repertoire codified by the universal genetic code is not up to the needs of emerging biotechnologies. For this reason, extensive genetic code re-engineering is essential to expand the scope of ribosomal protein translation, leading to reprogrammed microbial cells equipped with an alternative biochemical alphabet to be exploited as potential factories for biotechnological purposes. The prerequisite for this to happen is a continuous intracellular supply of noncanonical amino acids through synthetic metabolism from simple and cheap precursors. We have engineered an Escherichia coli bacterial system that fulfills these requirements through reconfiguration of the methionine biosynthetic pathway and the introduction of an exogenous direct trans-sulfuration pathway. Our metabolic scheme operates in vivo, rescuing intermediates from core cell metabolism and combining them with small bio-orthogonal compounds. Our reprogrammed E. coli strain is capable of the in-cell production of l-azidohomoalanine, which is directly incorporated into proteins in response to methionine codons. We thereby constructed a prototype suitable for economic, versatile, green sustainable chemistry, pushing towards enzyme chemistry and biotechnology-based production.


Subject(s)
Escherichia coli/metabolism , Metabolic Engineering , Methionine/biosynthesis , Methionine/analogs & derivatives , Methionine/chemistry , Molecular Structure
9.
Open Biol ; 10(3): 200034, 2020 03.
Article in English | MEDLINE | ID: mdl-32208818

ABSTRACT

A perturbed uptake of micronutrients, such as minerals and vitamins, impacts on different human diseases, including cancer and neurological disorders. Several data converge towards a crucial role played by many micronutrients in genome integrity maintenance and in the establishment of a correct DNA methylation pattern. Failure in the proper accomplishment of these processes accelerates senescence and increases the risk of developing cancer, by promoting the formation of chromosome aberrations and deregulating the expression of oncogenes. Here, the main recent evidence regarding the impact of some B vitamins on DNA damage and cancer is summarized, providing an integrated and updated analysis, mainly centred on vitamin B6. In many cases, it is difficult to finely predict the optimal vitamin rate that is able to protect against DNA damage, as this can be influenced by a given individual's genotype. For this purpose, a precious resort is represented by model organisms which allow limitations imposed by more complex systems to be overcome. In this review, we show that Drosophila can be a useful model to deeply understand mechanisms underlying the relationship between vitamin B6 and genome integrity.


Subject(s)
DNA Damage , Neoplasms/drug therapy , Vitamin B 6/therapeutic use , Animals , Disease Models, Animal , Drosophila , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Humans , Neoplasms/genetics , Vitamin B 6/pharmacology
10.
Sci Rep ; 9(1): 14188, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31578392

ABSTRACT

In eukaryotes, pyridoxal kinase (PDXK) acts in vitamin B6 salvage pathway to produce pyridoxal 5'-phosphate (PLP), the active form of the vitamin, which is implicated in numerous crucial metabolic reactions. In Drosophila, mutations in the dPdxk gene cause chromosome aberrations (CABs) and increase glucose content in larval hemolymph. Both phenotypes are rescued by the expression of the wild type human PDXK counterpart. Here we expressed, in dPdxk1 mutant flies, four PDXK human variants: three (D87H, V128I and H246Q) listed in databases, and one (A243G) found in a genetic screening in patients with diabetes. Differently from human wild type PDXK, none of the variants was able to completely rescue CABs and glucose content elicited by dPdxk1 mutation. Biochemical analysis of D87H, V128I, H246Q and A243G proteins revealed reduced catalytic activity and/or reduced affinity for PLP precursors which justify this behavior. Although these variants are rare in population and carried in heterozygous condition, our findings suggest that in certain metabolic contexts and diseases in which PLP levels are reduced, the presence of these PDXK variants could threaten genome integrity and increase cancer risk.


Subject(s)
Drosophila/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Pyridoxal Kinase/genetics , Pyridoxal Phosphate/genetics , Animals , Animals, Genetically Modified/genetics , Chromosome Aberrations , Drosophila/metabolism , Gene Expression Regulation, Enzymologic/genetics , Genomic Instability , Glucose/metabolism , Hemolymph/metabolism , Humans , Larva/genetics , Larva/metabolism , Metabolic Networks and Pathways/genetics , Mutation/genetics , Pyridoxal Kinase/metabolism , Pyridoxal Phosphate/biosynthesis , Vitamin B 6/biosynthesis , Vitamin B 6/genetics
11.
J Biol Chem ; 294(43): 15593-15603, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31484724

ABSTRACT

In Escherichia coli, the synthesis of pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, takes place through the so-called deoxyxylulose 5-phosphate-dependent pathway, whose last step is pyridoxine 5'-phosphate (PNP) oxidation to PLP, catalyzed by the FMN-dependent enzyme PNP oxidase (PNPOx). This enzyme plays a pivotal role in controlling intracellular homeostasis and bioavailability of PLP. PNPOx has been proposed to undergo product inhibition resulting from PLP binding at the active site. PLP has also been reported to bind tightly at a secondary site, apparently without causing PNPOx inhibition. The possible location of this secondary site has been indicated by crystallographic studies as two symmetric surface pockets present on the PNPOx homodimer, but this site has never been verified by other experimental means. Here, we demonstrate, through kinetic measurements, that PLP inhibition is actually of a mixed-type nature and results from binding of this vitamer at an allosteric site. This interpretation was confirmed by the characterization of a mutated PNPOx form, in which substrate binding at the active site is heavily hampered but PLP binding is preserved. Structural and functional connections between the active site and the allosteric site were indicated by equilibrium binding experiments, which revealed different PLP-binding stoichiometries with WT and mutant PNPOx forms. These observations open up new horizons on the mechanisms that regulate E. coli PNPOx, which may have commonalities with the mechanisms regulating human PNPOx, whose crucial role in vitamin B6 metabolism and epilepsy is well-known.


Subject(s)
Escherichia coli/enzymology , Feedback, Physiological , Pyridoxaminephosphate Oxidase/antagonists & inhibitors , Allosteric Regulation , Binding Sites , Biocatalysis , Kinetics , Models, Molecular , Oxidation-Reduction , Pyridoxal Phosphate/analogs & derivatives , Pyridoxal Phosphate/metabolism , Pyridoxaminephosphate Oxidase/chemistry , Pyridoxaminephosphate Oxidase/metabolism , Spectrum Analysis
12.
Interdiscip Sci ; 10(1): 111-125, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29098594

ABSTRACT

Bacterial proteins belonging to the YczE family are predicted to be membrane proteins of yet unknown function. In many bacterial species, the yczE gene coding for the YczE protein is divergently transcribed with respect to an adjacent transcriptional regulator of the MocR family. According to in silico predictions, proteins named YczR are supposed to regulate the expression of yczE genes. These regulators linked to the yczE genes are predicted to constitute a subfamily within the MocR family. To put forward hypotheses amenable to experimental testing about the possible function of the YczE proteins, a phylogenetic profile strategy was applied. This strategy consists in searching for those genes that, within a set of genomes, co-occur exclusively with a certain gene of interest. Co-occurrence can be suggestive of a functional link. A set of 30 mycobacterial complete proteomes were collected. Of these, only 16 contained YczE proteins. Interestingly, in all cases each yczE gene was divergently transcribed with respect to a yczR gene. Two orthology clustering procedures were applied to find proteins co-occurring exclusively with the YczE proteins. The reported results suggest that YczE may be involved in the membrane translocation and metabolism of sulfur-containing compounds mostly in rapidly growing, low pathogenicity mycobacterial species. These observations may hint at potential targets for therapies to treat the emerging opportunistic infections provoked by the widespread environmental mycobacterial species and may contribute to the delineation of the genomic and physiological differences between the pathogenic and non-pathogenic mycobacterial species.


Subject(s)
Bacterial Proteins/genetics , Computational Biology/methods , Genes, Bacterial , Membrane Proteins/genetics , Mycobacterium/genetics , Open Reading Frames/genetics , Amino Acid Sequence , Databases, Protein , Membrane Proteins/chemistry , Phylogeny , Proteome
13.
Data Brief ; 9: 292-313, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27668276

ABSTRACT

Detailed data from statistical analyses of the structural properties of the inter-domain linker peptides of the bacterial regulators of the family MocR are herein reported. MocR regulators are a recently discovered subfamily of bacterial regulators possessing an N-terminal domain, 60 residue long on average, folded as the winged-helix-turn-helix architecture responsible for DNA recognition and binding, and a large C-terminal domain (350 residue on average) that belongs to the fold type-I pyridoxal 5'-phosphate (PLP) dependent enzymes such aspartate aminotransferase. Data show the distribution of several structural characteristics of the linkers taken from bacterial species from five different phyla, namely Actinobacteria, Alpha-, Beta-, Gammaproteobacteria and Firmicutes. Interpretation and discussion of reported data refer to the article "Structural properties of the linkers connecting the N- and C- terminal domains in the MocR bacterial transcriptional regulators" (T. Milano, S. Angelaccio, A. Tramonti, M. L. Di Salvo, R. Contestabile, S. Pascarella, 2016) [1].

14.
Biochim Biophys Acta ; 1864(11): 1506-17, 2016 11.
Article in English | MEDLINE | ID: mdl-27530298

ABSTRACT

The cytosolic and mitochondrial isoforms of serine hydroxymethyltransferase (SHMT1 and SHMT2, respectively) are well-recognized targets of cancer research, since their activity is critical for purine and pyrimidine biosynthesis and because of their prominent role in the metabolic reprogramming of cancer cells. Here we show that 3-bromopyruvate (3BP), a potent novel anti-tumour agent believed to function primarily by blocking energy metabolism, differentially inactivates human SHMT1 and SHMT2. SHMT1 is completely inhibited by 3BP, whereas SHMT2 retains a significant fraction of activity. Site directed mutagenesis experiments on SHMT1 demonstrate that selective inhibition relies on the presence of a cysteine residue at the active site of SHMT1 (Cys204) that is absent in SHMT2. Our results show that 3BP binds to SHMT1 active site, forming an enzyme-3BP complex, before reacting with Cys204. The physiological substrate l-serine is still able to bind at the active site of the inhibited enzyme, although catalysis does not occur. Modelling studies suggest that alkylation of Cys204 prevents a productive binding of l-serine, hampering interaction between substrate and Arg402. Conversely, the partial inactivation of SHMT2 takes place without the formation of a 3BP-enzyme complex. The introduction of a cysteine residue in the active site of SHMT2 by site directed mutagenesis (A206C mutation), at a location corresponding to that of Cys204 in SHMT1, yields an enzyme that forms a 3BP-enzyme complex and is completely inactivated. This work sets the basis for the development of selective SHMT1 inhibitors that target Cys204, starting from the structure and reactivity of 3BP.


Subject(s)
Antineoplastic Agents/chemistry , Cysteine/chemistry , Glycine Hydroxymethyltransferase/chemistry , Pyruvates/chemistry , Serine/chemistry , Amino Acid Sequence , Catalytic Domain , Cloning, Molecular , Cysteine/metabolism , Cytosol/chemistry , Cytosol/enzymology , Enzyme Assays , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Glycine Hydroxymethyltransferase/antagonists & inhibitors , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Humans , Kinetics , Mitochondria/chemistry , Mitochondria/enzymology , Molecular Docking Simulation , Mutagenesis, Site-Directed , Protein Binding , Protein Domains , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serine/metabolism , Structure-Activity Relationship
15.
Biochem Res Int ; 2016: 4360285, 2016.
Article in English | MEDLINE | ID: mdl-27446613

ABSTRACT

The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH) architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average) that is homologous to fold type-I pyridoxal 5'-phosphate (PLP) dependent enzymes like aspartate aminotransferase (AAT). These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs). Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups.

16.
Biochim Open ; 3: 8-18, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29450126

ABSTRACT

Peptide inter-domain linkers are peptide segments covalently linking two adjacent domains within a protein. Linkers play a variety of structural and functional roles in naturally occurring proteins. In this work we analyze the sequence properties of the predicted linker regions of the bacterial transcriptional regulators belonging to the recently discovered MocR subfamily of the GntR regulators. Analyses were carried out on the MocR sequences taken from the phyla Actinobacteria, Firmicutes, Alpha-, Beta- and Gammaproteobacteria. The results suggest that MocR linkers display phylum-specific characteristics and unique features different from those already described for other classes of inter-domain linkers. They show an average length significantly higher: 31.8 ± 14.3 residues reaching a maximum of about 150 residues. Compositional propensities displayed general and phylum-specific trends. Pro is dominating in all linkers. Dyad propensity analysis indicate Pro-Pro as the most frequent amino acid pair in all linkers. Physicochemical properties of the linker regions were assessed using amino acid indices relative to different features: in general, MocR linkers are flexible, hydrophilic and display propensity for ß-turn or coil conformations. Linker sequences are hypervariable: only similarities between MocR linkers from organisms related at the level of species or genus could be found with sequence searches. The results shed light on the properties of the linker regions of the new MocR subfamily of bacterial regulators and may provide knowledge-based rules for designing artificial linkers with desired properties.

17.
Sci Rep ; 5: 12583, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26212886

ABSTRACT

Thiamin (vitamin B1) is a pharmacological agent boosting central metabolism through the action of the coenzyme thiamin diphosphate (ThDP). However, positive effects, including improved cognition, of high thiamin doses in neurodegeneration may be observed without increased ThDP or ThDP-dependent enzymes in brain. Here, we determine protein partners and metabolic pathways where thiamin acts beyond its coenzyme role. Malate dehydrogenase, glutamate dehydrogenase and pyridoxal kinase were identified as abundant proteins binding to thiamin- or thiazolium-modified sorbents. Kinetic studies, supported by structural analysis, revealed allosteric regulation of these proteins by thiamin and/or its derivatives. Thiamin triphosphate and adenylated thiamin triphosphate activate glutamate dehydrogenase. Thiamin and ThDP regulate malate dehydrogenase isoforms and pyridoxal kinase. Thiamin regulation of enzymes related to malate-aspartate shuttle may impact on malate/citrate exchange, responsible for exporting acetyl residues from mitochondria. Indeed, bioinformatic analyses found an association between thiamin- and thiazolium-binding proteins and the term acetylation. Our interdisciplinary study shows that thiamin is not only a coenzyme for acetyl-CoA production, but also an allosteric regulator of acetyl-CoA metabolism including regulatory acetylation of proteins and acetylcholine biosynthesis. Moreover, thiamin action in neurodegeneration may also involve neurodegeneration-related 14-3-3, DJ-1 and ß-amyloid precursor proteins identified among the thiamin- and/or thiazolium-binding proteins.


Subject(s)
Brain/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Signal Transduction/physiology , Thiamine/chemistry , Thiamine/metabolism , Amino Acid Sequence , Animals , Brain Chemistry , Male , Molecular Sequence Data , Rats , Rats, Wistar , Thiamine Pyrophosphate/chemistry , Thiamine Pyrophosphate/metabolism , Tissue Distribution
18.
Protein Eng Des Sel ; 28(10): 415-26, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25986490

ABSTRACT

Water molecules occurring in the interior of protein structures often are endowed with key structural and functional roles. We report the results of a systematic analysis of conserved water molecules in bacterial serine hydroxymethyltransferases (SHMTs). SHMTs are an important group of pyridoxal-5'-phosphate-dependent enzymes that catalyze the reversible conversion of l-serine and tetrahydropteroylglutamate to glycine and 5,10-methylenetetrahydropteroylglutamate. The approach utilized in this study relies on two programs, ProACT2 and WatCH. The first software is able to categorize water molecules in a protein crystallographic structure as buried, positioned in clefts or at the surface. The other program finds, in a set of superposed homologous proteins, water molecules that occur approximately in equivalent position in each of the considered structures. These groups of molecules are referred to as 'clusters' and represent structurally conserved water molecules. Several conserved clusters of buried or cleft water molecules were found in the set of 11 bacterial SHMTs we took into account for this work. The majority of these clusters were not described previously. Possible structural and functional roles for the conserved water molecules are envisaged. This work provides a map of the conserved water molecules helpful for deciphering SHMT mechanism and for rational design of molecular engineering experiments.


Subject(s)
Bacteria/enzymology , Conserved Sequence , Glycine Hydroxymethyltransferase/chemistry , Water , Molecular Dynamics Simulation , Protein Conformation
19.
Biochim Biophys Acta ; 1854(9): 1160-6, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25655354

ABSTRACT

Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, plays a crucial role in several cellular processes. In most organisms, PLP is recycled from nutrients and degraded B6-enzymes in a salvage pathway that involves pyridoxal kinase (PLK), pyridoxine phosphate oxidase and phosphatase activities. Regulation of the salvage pathway is poorly understood. Escherichia coli possesses two distinct pyridoxal kinases, PLK1, which is the focus of the present work, and PLK2. From previous studies dating back to thirty years ago, pyridoxal (PL) was shown to inhibit E. coli PLK1 forming a covalent link with the enzyme. This inhibition was proposed to play a regulative role in vitamin B6 metabolism, although its details had never been clarified. Recently, we have shown that also PLP produced during PLK1 catalytic cycle acts as an inhibitor, forming a Schiff base with Lys229, without being released in the solvent. The question arises as to which is the actual inhibition mechanism by PL and PLP. In the present work, we demonstrated that also PL binds to Lys229 as a Schiff base. However, the isolated covalent PLK1-PL complex is not inactive but, in the presence of ATP, is able to catalyse the single turnover production of PLP, which binds tightly to the enzyme and is ultimately responsible for its inactivation. The inactivation mechanism mediated by Lys229 may play a physiological role in controlling cellular levels of PLP. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.


Subject(s)
Escherichia coli/enzymology , Pyridoxal Kinase/antagonists & inhibitors , Pyridoxal Phosphate/pharmacology , Pyridoxal/pharmacology , Catalysis
20.
Molecules ; 19(1): 1004-22, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24434673

ABSTRACT

In this paper, we present a novel, "single experiment" methodology based on genetic engineering of metabolic pathways for direct intracellular production of non-canonical amino acids from simple precursors, coupled with expanded genetic code. In particular, we engineered the intracellular biosynthesis of L-azidohomoalanine from O-acetyl-L-homoserine and NaN3, and achieved its direct incorporation into recombinant target proteins by AUG codon reassignment in a methionine-auxotroph E. coli strain. In our system, the host's methionine biosynthetic pathway was first diverted towards the production of the desired non-canonical amino acid by exploiting the broad reaction specificity of recombinant pyridoxal phosphate-dependent O-acetylhomoserine sulfhydrylase from Corynebacterium glutamicum. Then, the expression of the target protein barstar, accompanied with efficient L-azidohomoalanine incorporation in place of L-methionine, was accomplished. This work stands as proof-of-principle and paves the way for additional work towards intracellular production and site-specific incorporation of biotechnologically relevant non-canonical amino acids directly from common fermentable sources.


Subject(s)
Alanine/analogs & derivatives , Bacterial Proteins/biosynthesis , Alanine/biosynthesis , Click Chemistry , Escherichia coli , Fermentation , Genetic Engineering , Metabolic Networks and Pathways , Protein Processing, Post-Translational , Recombinant Proteins/biosynthesis , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...