Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39177742

ABSTRACT

The elimination of organic substances, such as phenol, in conventional and biological processes, has been considered a challenge for the petroleum industry. In this work, reduced graphene oxide (rGO), obtained from cellulosic biomass (CB-rGO), as cotton waste, was employed as a phenol adsorbent in an aqueous solution simulating refinery effluent. The CB-rGO was characterized using HRTEM, Raman, XRD, FTIR, BET, and zeta analysis. The behavior of variables such as pH, contact time, temperature, CB-rGO mass, and adsorbate concentration on the characteristics of the adsorption process were continuously investigated. These parameters of the adsorption process were evaluated across a range of adsorbent concentrations from 100 to 300 mg/L, pH in the range of 2-11, adsorbent mass 5-25 mg, contact time of 0-180 min, and temperature of 20-60 °C. The adsorption isotherm data were better described by the Freundlich equation compared to the Langmuir and Sips models, despite the small difference in R2 values. Mechanism diffusion was analyzed using the Boyd model and confirmed to be the rate-limiting step in the adsorption process. The endothermic nature of this CB-rGO adsorption process with phenol was confirmed by verifying the thermodynamic data. This successful removal of phenol from synthetic effluents highlights the promising potential of this adsorbent obtained from an industrial residue and being an ecologically more sustainable alternative compared to the synthesis of other materials identified to remove this contaminant.

2.
Environ Sci Pollut Res Int ; 31(32): 44965-44982, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954345

ABSTRACT

Sulfate radical-based advanced oxidation processes (SR-AOPs) are renowned for their exceptional capacity to degrade refractory organic pollutants due to their wide applicability, cost-effectiveness, and swift mineralization and oxidation rates. The primary sources of radicals in AOPs are persulfate (PS) and peroxymonosulfate (PMS) ions, sparking significant interest in their mechanistic and catalytic aspects. To develop a novel nanocatalyst for SR-AOPs, particularly for PMS activation, we synthesized carbon-coated FeCo nanoparticles (NPs) using solvothermal methods based on the polyol approach. Various synthesis conditions were investigated, and the NPs were thoroughly characterized regarding their structure, morphology, magnetic properties, and catalytic efficiency. The FeCo phase was primarily obtained at [OH-] / [Metal] = 26 and [Fe] / [Co] = 2 ratios. Moreover, as the [Fe]/[Co] ratio increased, the degree of xylose carbonization to form a carbon coating (hydrochar) on the NPs also increased. The NPs exhibited a spherical morphology with agglomerates of varying sizes. Vibrating-sample magnetometer analysis (VSM) indicated that a higher proportion of iron resulted in NPs with higher saturation magnetization (up to 167.8 emu g-1), attributed to a larger proportion of FeCo bcc phase in the nanocomposite. The best catalytic conditions for degrading 100 ppm Rhodamine B (RhB) included 0.05 g L-1 of NPs, 2 mM PMS, pH 7.0, and a 20-min reaction at 25 °C. Notably, singlet oxygen was the predominant specie formed in the experiments in the SR-AOP, followed by sulfate and hydroxyl radicals. The catalyst could be reused for up to five cycles, retaining over 98% RhB degradation, albeit with increased metal leaching. Even in the first use, dissolved Fe and Co concentrations were 0.8 ± 0.3 and 4.0 ± 0.5 mg L-1, respectively. The FeCo catalyst proved to be effective in dye degradation and offers the potential for further refinement to minimize Co2+ leaching.


Subject(s)
Nanocomposites , Peroxides , Nanocomposites/chemistry , Peroxides/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Oxidation-Reduction , Iron/chemistry , Carbon/chemistry
3.
RSC Adv ; 14(28): 19953-19968, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38903671

ABSTRACT

The remarkable properties of carbon-based nanomaterials (CNMs) have stimulated a significant increase in studies on different 0D, 1D and 2D nanostructures, which have promising applications in various fields of science and technology. However, the use of graphite as a raw material, which is essential for their production, limits the scalability of these nanostructures. In this context, petroleum coke (PC), a by-product of the coking process in petrochemical industry with a high carbon content (>80 wt%), is emerging as an attractive and low-cost option for the synthesis of carbonaceous nanostructures. This brief review presents recent research related to the use of PC as a precursor for CNMs, such as graphene and its oxidized (GO) and reduced (RGO) variants, among other carbon-based nanostructures. The work highlights the performance of these materials in specific areas of application. In addition, this review describes and analyzes strategies for transforming low-cost, environmentally friendly waste into advanced technological innovations with greater added value, in line with the UN's 2030 Agenda.

4.
Int J Biol Macromol ; 253(Pt 5): 127204, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37797856

ABSTRACT

Agarose has numerous applications in biochemistry and medical textiles. This study aimed to produce agarose-graphene oxide-glycerol fibers and analyze their properties. The agarose gel was prepared by dissolving the polymer in 9:1 (v/v) dimethyl sulfoxide (DMSO): H2O, followed by spinning in an ethanol bath (1:1 (v/v) ethanol: H2O) at 20 °C. Fibers were obtained using 8 % (m/v) agarose, 2 % (m/v) glycerol, and 0.5 % and 1 % (m/v) graphene oxide (GO). The fibers had a titer of 18.32-32.49 tex and, a tenacity of 1.40-3.35 cN/tex. GO increased the thermal resistance by 79 %. The presence of glycerol and GO was confirmed and analyzed by FTIR and XPS. Fiber water absorption was decreased by 30 % with the GO addition. The weight loss increased by 55 % after glycerol addition, 51 % with GO addition, and 36 % with glycerol and GO simultaneous addition. Furthermore, GO exhibited 100 % inhibition for both S. aureus (gram-positive) and E. coli bacteria (gram-negative). Fiber F1, with only agarose, inhibited S. aureus by 34.93 %, F2 with 2 % glycerol by 48.72 %, F3 with 0.5 % GO by 63.42 %, and F4 with 2 % glycerol and 0.5 % GO by 30.65 %. However, the inhibition increased to 49.43 % with 1 % GO. The agarose fibers showed low inhibition for E. coli, ranging from 3.35 to 12.12 %.


Subject(s)
Biocompatible Materials , Graphite , Glycerol , Sepharose , Escherichia coli , Staphylococcus aureus , Graphite/chemistry , Ethanol
5.
Chemosphere ; 336: 139209, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37315857

ABSTRACT

This study investigated the potential of a novel biomass-derived cork as a suitable catalyst after its modification with Fe@Fe2O3 for in-situ application in heterogeneous electro-Fenton (HEF) process for benzoquinone (BQ) elimination from water. No attempts on the application of modified granulated cork (GC) as a suspended heterogeneous catalyst in the HEF process for water treatment have been published yet. GC was modified by sonification approach in a FeCl3 + NaBH4 solution to reduce the ferric ions to metallic iron in order to obtain Fe@Fe2O3-modified GC (Fe@Fe2O3/GC). Results clearly demonstrated that this catalyst exhibited excellent electrocatalytic properties, such as a high conductivity as well as relatively high redox current and possessed several active sites for water depollution applications. Using Fe@Fe2O3/GC as catalyst in HEF, 100% of BQ removal was achieved in synthetic solutions by applying 33.3 mA cm-2 after 120 min. Different experimental conditions were tested to determine that best possible conditions can be as follow: 50 mmol L-1 Na2SO4 and 10 mg L-1 of Fe@Fe2O3/GC catalyst using Pt/carbon-PTFE air diffusion cell by applying 33.3 mA cm-2. Nevertheless, when Fe@Fe2O3/GC was used in the HEF approach to depollute real water matrices, no complete BQ concentration was removal achieved after 300 min of treatment, achieving between 80 and 95% of effectiveness.


Subject(s)
Iron , Water Pollutants, Chemical , Iron/chemistry , Carbon/chemistry , Hydrogen Peroxide/chemistry , Catalysis , Water Pollutants, Chemical/analysis , Oxidation-Reduction
6.
Parasitol Res ; 121(9): 2673-2681, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35821144

ABSTRACT

The use of repellents is considered an alternative against biting insects, including Lutzomyia longipalpis (Diptera: Psychodidae), the main vector of the protozoan Leishmania infantum, visceral leishmaniasis's (VL) etiologic agent in the Americas. This study aimed to evaluate the repellent efficacy of icaridin nanostructured solution applied on cotton knitting fabric against L. longipalpis. Arm-in-cage tests were performed in eight volunteers at different concentrations (5%, 10%, 25%, and 50%), using L. longipalpis (n = 30). The bioassay was performed in 1, 24, 48, 72, 96, 120, and 144 h after impregnation and one test after washing the fabrics with icaridin. The total repellency rate (%R) > 95% was used as a reference to define a minimum effective concentration (MEC). The results revealed that the insects' landing mean decreased significantly in different icaridin concentrations, compared with the control tests (p < 0.05) and the 25% and 50% concentrations compared to lower concentration (5%) (p < 0.05). The higher concentrations (25% and 50%) provided longer complete protection times (CPTs) with 120 and 144 h of protection, respectively and the %R of 100% for 72 and 96 h after impregnation, respectively. The 25% was the MEC (%R Total = 98.18%). Our results indicate, for the first time, that icaridin nanostructured solution applied on cotton knitting fabric proved to be an efficient repellent against L. longipalpis with the presence of repellent action even after washing. The concentration of 25% showed better efficiency and may become an efficient method for L. longipalpis biting control.


Subject(s)
Insect Repellents , Leishmania infantum , Leishmaniasis, Visceral , Psychodidae , Animals , Brazil , Humans , Insect Repellents/pharmacology , Insect Vectors , Piperidines/pharmacology
7.
Mater Sci Eng C Mater Biol Appl ; 109: 110630, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32228905

ABSTRACT

Polymer-based wafers containing gold nanoparticles (AuNP) were prepared using κ-carrageenan (κC), locust bean gum (LBG) and polyvinyl alcohol (PVA) at ratios of 42/22/13% w/w and 35/15/17% w/w. The synthesized AuNPs were evaluated for their particle size and morphology. The produced wafers containing AuNPs were investigated for their physicochemical, morphological, mechanical, and swelling properties. In addition, bacterial barrier activity and in vitro cytotoxicity were also evaluated in this study. The AuNPs obtained were spherical in shape (~ 10-15 nm in diameter) and exhibited a single bell-shaped UV-vis absorption band centered ~ 540 nm. FT-IR spectra of the wafers containing AuNPs exhibited a shift of ν(O=S=O) absorption band toward a lower wavenumber and a shift of ν(OH) absorption band toward a higher wavenumber due to the coordination of OH groups to AuNPs and their interaction with O=S=O groups of κC, respectively. SEM images confirmed the porous structure of the produced wafers, being the surface area, mechanical properties, and swelling behavior directly affected by changing both the initial amount of [Au+3] and the composition of the wafers. Lastly, the produced wafers showed non-toxicity to NIH-3T3 fibroblast cells, and they also serve as a bacterial barrier. These findings endorsed the claim that the produced wafers containing AuNPs could be a promising material for wound dressing applications.


Subject(s)
Bandages , Carrageenan , Galactans , Gold , Mannans , Materials Testing , Metal Nanoparticles/chemistry , Plant Gums , Polyvinyl Alcohol , Animals , Carrageenan/chemistry , Carrageenan/pharmacology , Galactans/chemistry , Galactans/pharmacology , Gold/chemistry , Gold/pharmacology , Mannans/chemistry , Mannans/pharmacology , Mice , NIH 3T3 Cells , Plant Gums/chemistry , Plant Gums/pharmacology , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology
8.
Environ Sci Pollut Res Int ; 24(31): 24167-24176, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28884274

ABSTRACT

Electrochemical water treatment technologies are highly promising to achieve complete decolorization of dyebath effluents, as demonstrated by several studies reported in the literature. However, these works are focused on the treatment of one model pollutant and generalize the performances of the processes which are not transposable since they depend on the pollutant treated. Thus, in the present study, we evaluate, for the first time, the influence of different functional groups that modify the dye structure on the electrochemical process decolorization performance. The textile azo dyes Reactive Orange 16, Reactive Violet 4, Reactive Red 228, and Reactive Black 5 have been selected because they present the same molecular basis structure with different functional groups. The results demonstrate that the functional groups that reduce the nucleophilicity of the pollutant hinder the electrophilic attack of electrogenerated hydroxyl radical. Thereby, the overall decolorization efficiency is consequently reduced as well as the decolorization rate. Moreover, the presence of an additional chromophore azo bond in the molecule enhances the recalcitrant character of the azo dyes as pollutants. The formation of a larger and more stable conjugated π system increases the activation energy required for the electrophyilic attack of •OH, affecting the performance of electrochemical technologies on effluent decolorization.


Subject(s)
Azo Compounds/chemistry , Electrochemical Techniques/methods , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Azo Compounds/analysis , Hydroxyl Radical/chemistry , Oxidation-Reduction , Water Pollutants, Chemical/analysis
9.
PLoS One ; 9(5): e96750, 2014.
Article in English | MEDLINE | ID: mdl-24819928

ABSTRACT

AIMS: The aim of this study was to evaluate the effects of azilsartan (AZT) on bone loss, inflammation, and the expression of matrix metallo proteinases (MMPs), receptor activator of nuclear factor κB ligand (RANKL), receptor activator of nuclear factor κB (RANK), osteoprotegerin (OPG), cyclooxygenase-2 (COX-2), and cathepsin K in periodontal tissue in a rat model of ligature-induced periodontitis. MATERIALS AND METHODS: Male Wistar albino rats were randomly divided into 5 groups of 10 rats each: (1) nonligated, water; (2) ligated, water; (3) ligated, 1 mg/kg AZT; (4) ligated, 5 mg/kg AZT; and (5) ligated, 10 mg/kg AZT. All groups were treated with saline or AZT for 10 days. Periodontal tissues were analyzed by histopathology and immunohistochemical detection of MMP-2, MMP-9, COX-2, RANKL, RANK, OPG, and cathepsin K. Levels of IL-1ß, IL-10, TNF-α, myeloperoxidase (MPO), and glutathione (GSH) were determined by ELISA. RESULTS: Treatment with 5 mg/kg AZT resulted in reduced MPO (p<0.05) and IL-1ß (p<0.05), increased levels of IL-10 (p<0.05), and reduced expression of MMP-2, MMP-9, COX-2, RANK, RANKL, cathepsin K, and increased expression of OPG. CONCLUSIONS: These findings reveal that AZT increases anti-inflammatory cytokines and GSH and decreases bone loss in ligature-induced periodontitis in rats.


Subject(s)
Benzimidazoles/therapeutic use , Cathepsin K/blood , Interleukin-10/blood , Matrix Metalloproteinase 2/blood , Matrix Metalloproteinase 9/blood , Osteoprotegerin/blood , Oxadiazoles/therapeutic use , Periodontitis/blood , Periodontitis/drug therapy , Receptor Activator of Nuclear Factor-kappa B/blood , Animals , Interleukin-1beta/blood , Male , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL