ABSTRACT
As part of our continuing efforts to discover new bioactive compounds from endophytic fungal sources, we have investigated the extract of the Paraphaeosphaeria sporulosa F03 strain. The study led to the isolation of four new 3-methyl-isoquinoline alkaloids (1: â-â4: ) and four known polyketides (5: â-â8: ). The structures of compounds 1: â-â4: were elucidated by 1D and 2D NMR experiments and HRMS analysis. The absolute configuration of 4: was determined by comparison of its experimental electronic circular dichroism spectrum with calculated data. Compounds 1: â-â4: exhibited antifungal activity with minimal inhibitory concentration values ranging from 6.25â-â50 µg/mL against six Candida species but they did not present any cytotoxic activity against the human tumor cell lines A549 (lung), MCF-7 (breast), and HepG2 (hepatocellular). In addition, compound 4: exhibited antiplasmodial activity in the low micromolar range (IC50 = 4 µM).
Subject(s)
Alkaloids , Antimalarials , Eriocaulaceae , Polyketides , Antifungal Agents/pharmacology , Antimalarials/pharmacology , Ascomycota , Endophytes/chemistry , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacology , Molecular Structure , Plant Extracts , Polyketides/chemistry , Polyketides/pharmacologyABSTRACT
BACKGROUND: Vaginal infections caused by non-albicans species have become common in women of all age groups. The resistance of species such as Candida parapsilosis to the various antifungal agents is a risk factor attributed to these types of infections, which instigates the search for new sources of active compounds in vulvovaginal candidiasis (VCC) therapy. OBJECTIVE: This study evaluated the antifungal activity of Syngonanthus nitens Bong. (Ruhland) derivatives and employed a lipid nanoemulsion as a delivery system.' METHODS: In this study, a lipid nanoemulsion was employed as a delivery system composed of Cholesterol (10%), soybean phosphatidylcholine: Brij 58 (1: 2) and PBS (pH 7.4) with the addition of 0.5% of a chitosan dispersion (80%), and evaluated the antifungal activity of S. nitens Bong. (Ruhland) derivatives against planktonic cells and biofilms of Candida parapsilosis. By a biomonitoring fractionation, the crude extract (EXT) and one fraction (F2) were selected and incorporated into a lipid nanoemulsion (NL) composed of cholesterol (10%), a 1:2 mixture of soybean phosphatidylcholine:polyoxyethylene -20- cetyl ether (10%), and phosphate buffer solution (pH 7.4) with a 0.5% chitosan dispersion (80%). The NL presented a diameter size between 50-200 nm, pseudoplastic behavior, and positive charge. The EXT and five fractions were active against planktonic cells. RESULTS AND DISCUSSION: The incorporation of EXT and F2 into the NL increased antifungal activity and enhanced the anti-biofilm potential. This study classified the use of an NL as an important tool for the administration of S. nitens derivatives in cases of infections caused by this C. parapsisilosis. CONCLUSION: This work concluded that S. nitens derivatives were important sources of active molecules against C. parapsilosis and the use of a lipid nanoemulsion was an important tool to promote more effective F2 release and to improve the antifungal activity aiming the control of C. parapsilosis infections.
Subject(s)
Antifungal Agents/pharmacology , Candidiasis, Vulvovaginal , Eriocaulaceae , Antifungal Agents/chemistry , Antifungal Agents/therapeutic use , Biofilms , Candida parapsilosis , Candidiasis, Vulvovaginal/drug therapy , Female , Humans , Lipids/chemistry , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/pharmacologyABSTRACT
Three new benzaldehyde derivatives, sporulosaldeins Aâ-âC (1: -3: ), and 3 new benzopyran derivatives, sporulosaldeins Dâ-âF (4: -6: ), were discovered from an endophytic fungus, Paraphaeosphaeria sp. F03, which was isolated from Paepalanthus planifolius leaves. Compounds 1: -6: were elucidated by 1- and 2-dimensional nuclear magnetic resonance experiments and high-resolution mass spectrometry analysis. The absolute configuration of compound 5: was determined through the comparison of experimental and calculated electronic circular dichroism data. Compounds 1: -6: were found to exhibit antifungal activity with minimum inhibitory concentration (MIC) values of 7.8â-â250 µg/mL and racemic mixture of compound 6: exhibited weak cytotoxicity against MCF-7 and LM3 with IC50 values of 34.4 and 39.2 µM, respectively.
Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Ascomycota/chemistry , Benzaldehydes/pharmacology , Benzopyrans/pharmacology , Cytotoxins/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Benzaldehydes/chemistry , Benzaldehydes/isolation & purification , Benzopyrans/chemistry , Benzopyrans/isolation & purification , Cell Line, Tumor , Cytotoxins/chemistry , Cytotoxins/isolation & purification , Endophytes , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mice , Microbial Sensitivity Tests , Molecular StructureABSTRACT
When catechins are found in plant extracts, they are almost always identified as catechin and/or epicatechin probably due to stereoselectivity of the enzymes involved in the biosynthesis of these substances. However, the lack of reports regarding to ent-catechin as well as ent-epicatechin does not necessarily mean that these compounds have not been produced. In fact, most of the previous reports used chromatographic conditions not suitable for such separation. This article describes a simple and reliable analytical HPLC-PAD-CD method for simultaneous determination of catechin diastereomers both in infusions and extracts from the leaves of Byrsonima species. The direct separation of catechin, ent-catechin, epicatechin, and ent-epicatechin was obtained in normal phase by HPLC-PAD-CD using Chiralcel OD-H as chiral stationary phase and n-hexane/ethanol with 0.1% of TFA as mobile phase.
Subject(s)
Catechin/analysis , Catechin/chemistry , Chromatography, High Pressure Liquid/methods , Circular Dichroism/methods , Malpighiaceae/chemistry , Plant Leaves/chemistry , Catechin/isolation & purification , Electrodes , Linear Models , Methanol/chemistry , Reproducibility of Results , StereoisomerismABSTRACT
The activities of perlatolic acid (1), atranorin (2), and lecanoric acid (3) and their derivatives, such as orsellinates and beta-methyl orsellinates obtained by alcoholysis, were assessed for stimulation of the release of hydrogen peroxide and nitric oxide in cultures of peritoneal macrophage cells from mice. The hydrogen peroxide production was estimated by oxidation of phenol red, while the Griess reagent was used to determine the nitric oxide production. 1 and 4-methoxy-ethyl orsellinate (XVII) were the compounds that induced the greatest release of H2O2, whereas n-pentyl orsellinate (IV), iso-propyl orsellinate (V), sec-butyl orsellinate (VI), and XVII induced a small release of NO. These results indicate that lichen products and their derivatives have potential immune-modulating activities.
Subject(s)
Hydrogen Peroxide/metabolism , Lichens/metabolism , Macrophages/metabolism , Nitric Oxide/metabolism , Plant Extracts/metabolism , Animals , MiceABSTRACT
The isolation of polyphenolic compounds from an infusion of the Brazilian plant Davilla elliptica (Dilleniaceae), used as tea by virtue of its digestive properties, is described. An improved preparative HPLC method was used in order to isolate pure polyphenols from the complex mixture. Liquid-liquid extraction and solid-phase extraction were employed to minimise the interference of polymeric compounds and to provide an enriched fraction of the compounds of interest. The identification of the isolated compounds was performed using analytical HPLC as well as direct injection electrospray ionisation ion trap tandem mass spectrometry (ESI-IT-MS/MS). The high flavonoid content suggests that D. elliptica may be a promising source of compounds to produce natural phytomedicines.
Subject(s)
Chromatography, High Pressure Liquid/methods , Dilleniaceae/chemistry , Flavonoids/isolation & purification , Phenols/isolation & purification , Flavonoids/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Polyphenols , Spectrometry, Mass, Electrospray Ionization , Tandem Mass SpectrometryABSTRACT
Direct flow injection electrospray ionization ion trap tandem mass spectrometry (ESI-IT-MS/MS) was used to investigate the polyphenolic compounds present in an infusion from the barks of Hancornia speciosa Gom. (Apocynaceae), a native Brazilian plant popularly known as 'mangabeira', used as a source of nutrition and against gastric disorders. After a simple sample filtration pretreatment the characteristic fingerprint of the infusion was performed in negative ion ESI mode in a few minutes. At low capillary-voltage activation, the deprotonated molecules ([M--H]-) were observed and using collision-induced dissociation the product ion spectra showed the presence of a homologous series of B-type proanthocyanidins, as well as another series containing their respective C-glycosylated derivatives, with a degree of polymerization from 1 up to 6 units of interlinked catechins. Therefore, direct flow injection allowed us to identify the key compounds without preparative isolation of the components.
Subject(s)
Apocynaceae/chemistry , Plant Bark/chemistry , Proanthocyanidins/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Brazil , Medicine, Traditional , Plant Extracts/chemistry , Proanthocyanidins/analysis , Spectrometry, Mass, Electrospray Ionization/instrumentationABSTRACT
Byrsonima intermedia is a native species of the cerrado formation (tropical American savannah). In Brazil, this plant has been used for the treatment of fever, in ulcers, as a diuretic, as antiasthmatics and in skin infections. Members of the genus Byrsonima (Malpighiaceae) are employed not only in the folk medicine but also as food to make juice, jellies and liquor. The aim of this work was to evaluate the mutagenic effects of Byrsonima intermedia, common name 'murici'. Phytochemical analysis of methanol extract furnished (+)-catechin, (-)-epicatechin, quercetin-3-O-beta-d-galactopyranoside, methyl gallate, gallic acid, quercetin-3-O-alpha-l-arabinopyranoside, amentoflavone, quercetin, quercetin-3-O-(2''-O-galloyl)-beta-galactopyranoside and quercetin-3-O-(2''-O-galloyl)-alpha-arabinopyranoside. Methanol, hydromethanol and chloroform extracts were evaluated in mutagenic assay with Salmonella typhimurium (Ames test) and mice (Micronucleus test). The methanolic extract presented signs of mutagenic activity for the strains TA98 and TA100 in the Ames assay. Mutagenicity was not observed in vivo.
Subject(s)
Mutagens/toxicity , Plants/chemistry , Plants/toxicity , Animals , Chloroform , Cyclophosphamide/toxicity , Methanol , Mice , Micronucleus Tests , Plant Extracts/toxicity , Plant Leaves/chemistry , Rats , Reticulocytes/drug effects , Reticulocytes/ultrastructure , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , SolventsABSTRACT
The methanolic extract of the leaves of the medicinal plant Byrsonima crassa (Malpighiaceae) contain flavonoids with antioxidant activity. They were separated in a preparative scale using high-speed counter-current chromatography. The optimum solvent system used was composed of a mixture of ethyl acetate-n-propanol-water (140:8:80 (v/v/v)) and led to a successful separation between monoglucosilated flavonoids (quercetin-3-O-alpha-L-arabinoside, quercetin-3-O-beta-D-galactoside) and the biflavonoid amentoflavone in only 3.5 h. The purities of quercetin-3-O-alpha-L-arabinoside (95 mg), quercetin-3-O-beta-D-galactoside (16 mg) and the biflavonoid amentoflavone (114 mg) were all isolated at purity over 95%. Identification was performed by 1H NMR, 13C NMR and UV analyses.