Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Future Microbiol ; 15: 21-33, 2020 01.
Article in English | MEDLINE | ID: mdl-32043361

ABSTRACT

Aim: This study aimed to evaluate the activity of 2'-hydroxychalcone-loaded in nanoemulsion (NLS + 2'chalc), the cytotoxic effect and toxicity against Paracoccidioides brasiliensis and Paracoccidioides lutzii using a zebrafish model. Materials & methods: Preparation and physical-chemical characterization of nanoemulsion (NLS) and NLS + 2'chalc were performed. MIC and minimum fungicide concentration, cytotoxicity and toxicity were also evaluated in the Danio rerio model. Results: NLS + 2'chalc showed fungicidal activity against Paracoccidioides spp. without cytotoxicity in MRC5 and HepG2 lines. It also had high selectivity index values and no toxicity in the zebrafish model based on MIC values. Conclusion: NLS + 2'chalc is a potential new alternative treatment for paracoccidioidomycosis.


Subject(s)
Antifungal Agents/pharmacology , Chalcones/pharmacology , Paracoccidioides/drug effects , Animals , Cell Line , Chalcones/chemistry , Emulsions/pharmacology , Fibroblasts/drug effects , Hep G2 Cells , Humans , Microbial Sensitivity Tests , Models, Animal , Nanoparticles , Paracoccidioidomycosis/microbiology , Zebrafish
3.
Bioorg Med Chem Lett ; 25(17): 3564-8, 2015 09 01.
Article in English | MEDLINE | ID: mdl-26169126

ABSTRACT

The enzyme glycerol-3-phosphate dehydrogenase (G3PDH) from Leishmania species is considered as an attractive target to design new antileishmanial drugs and a previous in silico study reported on the importance of chalcones to achieve its inhibition. Here, we report the identification of a synthetic chalcone in our in vitro assays with promastigote cells from Leishmania amazonensis, its biological activity in animal models, and docking followed by molecular dynamics simulation to investigate the molecular interactions and structural patterns that are crucial to achieve the inhibition complex between this compound and G3PDH. A molecular fragment of this natural product derivative can provide new inhibitors with increased potency and selectivity.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Chalcones/chemistry , Chalcones/pharmacology , Glycerolphosphate Dehydrogenase/antagonists & inhibitors , Leishmania/enzymology , Animals , Glycerolphosphate Dehydrogenase/metabolism , Leishmania/drug effects , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Macrophages/drug effects , Mice , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL