Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Parkinsonism Relat Disord ; 109: 105318, 2023 04.
Article in English | MEDLINE | ID: mdl-36842866

ABSTRACT

INTRODUCTION: Deep brain stimulation (DBS) is a well-established treatment for patients with Parkinson's disease (PD) improving quality of life, motor, and non-motor symptoms. However, non-motor effects in PD subtypes are understudied. We hypothesized that patients with 'postural instability and gait difficulty' (PIGD) experience more beneficial non-motor effects than 'tremor-dominant' patients undergoing DBS for PD. METHODS: In this prospective, observational, international multicentre study with a 6-month follow-up, we assessed the Non-Motor Symptom Scale (NMSS) as primary and the following secondary outcomes: Unified PD Rating Scale-motor examination (UPDRS-III), Scales for Outcomes in PD (SCOPA)-activities of daily living (ADL) and -motor complications, PDQuestionnaire-8 (PDQ-8), and levodopa-equivalent daily dose (LEDD). We analysed within-group longitudinal changes with Wilcoxon signed-rank test and Benjamini-Hochberg correction for multiple comparisons. Additionally, we explored outcome between-group differences of motor subtypes with Mann-Whitney U-tests. RESULTS: In 82 PIGD and 33 tremor-dominant patients included in this study, baseline NMSS total scores were worse in PIGD patients, both groups experienced postoperative improvements of the NMSS sleep/fatigue domain, and between-group differences in postoperative outcomes were favourable in the PIGD group for the NMSS total and miscellaneous domain scores. CONCLUSIONS: This study provides evidence of a favourable outcome of total non-motor burden in PIGD compared to tremor-dominant patients undergoing DBS for PD. These differences of clinical efficacy on non-motor aspects should be considered when advising and monitoring patients with PD undergoing DBS.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/complications , Tremor/therapy , Tremor/complications , Prospective Studies , Quality of Life , Activities of Daily Living , Subthalamic Nucleus/physiology
2.
Parkinsonism Relat Disord ; 83: 1-5, 2021 02.
Article in English | MEDLINE | ID: mdl-33385858

ABSTRACT

INTRODUCTION: Hereditary spastic paraplegia is a heterogeneous group of genetic disorders characterized by degeneration of the corticospinal tracts, coursing with progressive weakness and spasticity of the lower limbs. To date, there are no effective treatments for progressive deficits or disease-modifying therapy for those patients. We report encouraging results for spastic paraparesis after spinal cord stimulation. METHODS: A 51-year-old woman suffering from progressive weakness and spasticity in lower limbs related to hereditary spastic paraplegia type 4 underwent spinal cord stimulation (SCS) and experienced also significant improvement in motor function. Maximum ballistic voluntary isometric contraction test, continuous passive motion test and gait analysis using a motion-capture system were performed in ON and OFF SCS conditions. Neurophysiologic assessment consisted of obtaining motor evoked potentials in both conditions. RESULTS: Presurgical Spastic Paraplegia Rating Scale (SPRS) score was 26. One month after effective SCS was initiated, SPRS went down to 15. At 12 months follow up, she experienced substantial improvement in motor function and in gait performance, with SPRS scores 23 (OFF) and down to 20 (ON). There was an increased isometric muscle strength (knee extension, OFF: 41 N m; ON: 71 N m), lower knee extension and flexion torque values in continuous passive motion test (decrease in spastic tone) and improvement in gait (for example, step length increase). CONCLUSION: Despite being a case study, our findings suggest innovative lines of research for the treatment of spastic paraplegia.


Subject(s)
Gait Disorders, Neurologic/rehabilitation , Motor Activity , Paraplegia/rehabilitation , Spastic Paraplegia, Hereditary/rehabilitation , Spinal Cord Stimulation , Female , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/physiopathology , Humans , Middle Aged , Motor Activity/physiology , Paraplegia/complications , Paraplegia/physiopathology , Severity of Illness Index , Spastic Paraplegia, Hereditary/complications , Spastic Paraplegia, Hereditary/physiopathology
3.
Brain Stimul ; 13(6): 1697-1705, 2020.
Article in English | MEDLINE | ID: mdl-33038595

ABSTRACT

BACKGROUND: Subthalamic (STN) and pallidal (GPi) deep brain stimulation (DBS) improve quality of life, motor, and nonmotor symptoms (NMS) in advanced Parkinson's disease (PD). However, few studies have compared their nonmotor effects. OBJECTIVE: To compare nonmotor effects of STN-DBS and GPi-DBS. METHODS: In this prospective, observational, multicenter study including 60 PD patients undergoing bilateral STN-DBS (n = 40) or GPi-DBS (n = 20), we examined PDQuestionnaire (PDQ), NMSScale (NMSS), Unified PD Rating Scale-activities of daily living, -motor impairment, -complications (UPDRS-II, -III, -IV), Hoehn&Yahr, Schwab&England Scale, and levodopa-equivalent daily dose (LEDD) preoperatively and at 6-month follow-up. Intra-group changes at follow-up were analyzed with Wilcoxon signed-rank or paired t-test, if parametric tests were applicable, and corrected for multiple comparisons. Inter-group differences were explored with Mann-Whitney-U/unpaired t-tests. Analyses were performed before and after propensity score matching which balanced out demographic and preoperative clinical characteristics. Strength of clinical changes was assessed with effect size. RESULTS: In both groups, PDQ, UPDRS-II, -IV, Schwab&England Scale, and NMSS improved significantly at follow-up. STN-DBS was significantly better for LEDD reduction, GPi-DBS for UPDRS-IV. While NMSS total score outcomes were similar, explorative NMSS domain analyses revealed distinct profiles: Both targets improved sleep/fatigue and mood/cognition, but only STN-DBS the miscellaneous (pain/olfaction) and attention/memory and only GPi-DBS cardiovascular and sexual function domains. CONCLUSIONS: To our knowledge, this is the first study to report distinct patterns of beneficial nonmotor effects of STN-DBS and GPi-DBS in PD. This study highlights the importance of NMS assessments to tailor DBS target choices to patients' individual motor and nonmotor profiles.


Subject(s)
Deep Brain Stimulation/methods , Globus Pallidus/physiology , Parkinson Disease/psychology , Parkinson Disease/therapy , Subthalamic Nucleus/physiology , Activities of Daily Living/psychology , Aged , Fatigue/physiopathology , Female , Follow-Up Studies , Humans , Levodopa/pharmacology , Levodopa/therapeutic use , Male , Middle Aged , Parkinson Disease/physiopathology , Prospective Studies , Quality of Life/psychology , Sleep/drug effects , Treatment Outcome
4.
Front Neurol ; 10: 905, 2019.
Article in English | MEDLINE | ID: mdl-31507514

ABSTRACT

Spinal cord stimulation (SCS) has been used for the treatment of chronic pain for nearly five decades. With a high degree of efficacy and a low incidence of adverse events, it is now considered to be a suitable therapeutic alternative in most guidelines. Experimental studies suggest that SCS may also be used as a therapy for motor and gait dysfunction in parkinsonian states. The most common and disabling gait dysfunction in patients with Parkinson's disease (PD) is freezing of gait (FoG). We review the evolution of SCS for gait disorders from bench to bedside and discuss potential mechanisms of action, neural substrates, and clinical outcomes.

5.
Mov Disord ; 34(3): 353-365, 2019 03.
Article in English | MEDLINE | ID: mdl-30719763

ABSTRACT

OBJECTIVE: Real-life observational report of clinical efficacy of bilateral subthalamic stimulation (STN-DBS), apomorphine (APO), and intrajejunal levodopa infusion (IJLI) on quality of life, motor, and nonmotor symptoms (NMS) in Parkinson's disease (PD). METHODS: In this prospective, multicenter, international, real-life cohort observation study of 173 PD patients undergoing STN-DBS (n = 101), IJLI (n = 33), or APO (n = 39) were followed-up using PDQuestionnaire-8, NMSScale (NMSS), Unified PD Rating Scale (UPDRS)-III, UPDRS-IV, and levodopa equivalent daily dose (LEDD) before and 6 months after intervention. Outcome changes were analyzed with Wilcoxon signed-rank or paired t test when parametric tests were applicable. Multiple comparisons were corrected (multiple treatments/scales). Effect strengths were quantified with relative changes, effect size, and number needed to treat. Analyses were computed before and after propensity score matching, balancing demographic and clinical characteristics. RESULTS: In all groups, PDQuestionnaire-8, UPDRS-IV, and NMSS total scores improved significantly at follow-up. Levodopa equivalent daily dose was significantly reduced after STN-DBS. Explorative NMSS domain analyses resulted in distinct profiles: STN-DBS improved urinary/sexual functions, mood/cognition, sleep/fatigue, and the miscellaneous domain. IJLI improved the 3 latter domains and gastrointestinal symptoms. APO improved mood/cognition, perceptual problems/hallucinations, attention/memory, and the miscellaneous domain. Overall, STN-DBS and IJLI seemed favorable for NMSS total score, and APO favorable for neuropsychological/neuropsychiatric NMS and PDQuestionnaire-8 outcome. CONCLUSIONS: This is the first comparison of quality of life, nonmotor. and motor outcomes in PD patients undergoing STN-DBS, IJLI, and APO in a real-life cohort. Distinct effect profiles were identified for each treatment option. Our results highlight the importance of holistic nonmotor and motor symptoms assessments to personalize treatment choices. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Antiparkinson Agents/therapeutic use , Apomorphine/therapeutic use , Deep Brain Stimulation/methods , Dopamine Agonists/therapeutic use , Levodopa/therapeutic use , Parkinson Disease/therapy , Subthalamic Nucleus/physiopathology , Aged , Female , Humans , Male , Mental Status and Dementia Tests , Middle Aged , Parkinson Disease/drug therapy , Parkinson Disease/physiopathology , Prospective Studies , Quality of Life , Treatment Outcome
6.
World Neurosurg ; 114: e559-e564, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29548954

ABSTRACT

BACKGROUND: Olfactory dysfunction is a nonmotor symptom of Parkinson disease (PD) associated with reduction in quality of life. There is no evidence on whether improvements in olfaction after subthalamic deep brain stimulation (STN-DBS) may be directly attributable to motor improvement or whether this reflects a direct effect of DBS on olfactory brain areas. The aim of the present study was to evaluate the effect of DBS on olfactory function in PD, as well as to explore the correlation between these changes and changes in motor symptoms and brain metabolism. METHODS: Thirty-two patients with PD were screened for STN-DBS. Patients were evaluated before and 1 year after surgery. Primary outcome was the change in olfactory function (Sniffin' Sticks odor-identification test [SST]) after surgery among the patients with hyposmia at baseline. Secondary outcomes included the relationship between motor outcomes and olfactory changes and [18F]fluorodeoxyglucose-positron emission tomography analysis between subgroups with improvement versus no improvement of smell. RESULTS: STN-DBS improved SST after surgery (preoperative SST, median 7.3 ± 2.4 vs. postoperative SST, median 8.2 ± 2.1; P = 0.045) in a subset of patients among 29 of 32 patients who presented with hyposmia at baseline. The improvement in SST was correlated with DBS response (r = 0.424; P = 0.035). There was also an increase in glucose metabolism in the midbrain, cerebellum, and right frontal lobe in patients with SST improvement (P < 0.001). CONCLUSIONS: STN-DBS improves odor identification in a subset of patients with PD. Motor improvement together with changes in the brain metabolism may be linked to this improvement.


Subject(s)
Deep Brain Stimulation , Olfaction Disorders/therapy , Parkinson Disease/complications , Smell/physiology , Subthalamic Nucleus/physiopathology , Adult , Aged , Deep Brain Stimulation/methods , Female , Humans , Male , Middle Aged , Olfaction Disorders/etiology , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Positron-Emission Tomography/methods , Postoperative Period , Quality of Life , Treatment Outcome
9.
Mov Disord ; 32(2): 278-282, 2017 02.
Article in English | MEDLINE | ID: mdl-27862267

ABSTRACT

BACKGROUND: Deep brain stimulation and levodopatherapy ameliorate motor manifestations in Parkinson's disease, but their effects on axial signs are not sustained in the long term. OBJECTIVES: The objective of this study was to investigate the safety and efficacy of spinal cord stimulation on gait disturbance in advanced Parkinson's disease. METHODS: A total of 4 Parkinson's disease patients who experienced significant postural instability and gait disturbance years after chronic subthalamic stimulation were treated with spinal cord stimulation at 300 Hz. Timed-Up-GO and 20-meter-walk tests, UPDRS III, freezing of gait questionnaire, and quality-of-life scores were measured at 6 months and compared to baseline values. Blinded assessments to measure performance in the Timed-Up-GO and 20-meter-walk tests were carried out during sham stimulation at 300 Hz and 60 Hz. RESULTS: Patients treated with spinal cord stimulation had approximately 50% to 65% improvement in gait measurements and 35% to 45% in UPDRS III and quality-of-life scores. During blinded evaluations, significant improvements in the Timed-Up-GO and 20-meter-walk tests were only recorded at 300 Hz. CONCLUSION: Spinal cord stimulation at 300 Hz was well tolerated and led to a significant improvement in gait. © 2016 International Parkinson and Movement Disorder Society.


Subject(s)
Gait Disorders, Neurologic/therapy , Outcome Assessment, Health Care , Parkinson Disease/therapy , Spinal Cord Stimulation/methods , Aged , Deep Brain Stimulation , Female , Gait Disorders, Neurologic/etiology , Humans , Male , Middle Aged , Parkinson Disease/complications , Single-Blind Method
12.
Mov Disord ; 28(14): 2027-32, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24150979

ABSTRACT

BACKGROUND: It is still unclear whether dopamine (DA) levels correlate with Parkinson's disease (PD) severity or play a role in the mechanisms of high-frequency stimulation (HFS). METHODS: We have used microdialysis to record pallidal DA in 5 patients with PD undergoing microelectrode-guided pallidotomy. RESULTS: We found that patients with more severe disease and, consequently, lower pallidal DA did poorly after pallidal lesions. In the operating room, 4 of 5 patients had a significant increase in DA levels during HFS (600%, on average). To test the hypothesis that DA was important for the effects of stimulation, we correlated the amelioration in rigidity observed in the operating room with pallidal DA release. Though rigidity was 56% better during stimulation, no correlation was found between such an improvement and DA release. CONCLUSIONS: These findings suggest that additional mechanisms not directly dependent on pallidal DA release may be involved in the clinical effects of HFS of the globus pallidus internus.


Subject(s)
Deep Brain Stimulation/methods , Dopamine/metabolism , Globus Pallidus/physiology , Parkinson Disease/therapy , Aged , Biophysics , Chromatography, Liquid , Female , Humans , Intraoperative Period , Male , Microdialysis , Middle Aged , Parkinson Disease/metabolism , Severity of Illness Index , Statistics as Topic , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...