Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(11): e0294868, 2023.
Article in English | MEDLINE | ID: mdl-38033043

ABSTRACT

Streptococcus gallolyticus sp. gallolyticus (SGG) is a gut pathobiont involved in the development of colorectal cancer (CRC). To decipher SGG contribution in tumor initiation and/or acceleration respectively, a global transcriptome was performed in human normal colonic cells (FHC) and in human tumoral colonic cells (HT29). To identify SGG-specific alterations, we chose the phylogenetically closest relative, Streptococcus gallolyticus subsp. macedonicus (SGM) as control bacterium. We show that SGM, a bacterium generally considered as safe, did not induce any transcriptional changes on the two human colonic cells. The transcriptional reprogramming induced by SGG in normal FHC and tumoral HT29 cells was significantly different, although most of the genes up- and down-regulated were associated with cancer disease. Top up-regulated genes related to cancer were: (i) IL-20, CLK1, SORBS2, ERG1, PIM1, SNORD3A for normal FHC cells and (ii) TSLP, BHLHA15, LAMP3, ZNF27B, KRT17, ATF3 for cancerous HT29 cells. The total number of altered genes were much higher in cancerous than in normal colonic cells (2,090 vs 128 genes being affected, respectively). Gene set enrichment analysis reveals that SGG-induced strong ER- (endoplasmic reticulum) stress and UPR- (unfolded protein response) activation in colonic epithelial cells. Our results suggest that SGG induces a pro-tumoral shift in human colonic cells particularly in transformed cells potentially accelerating tumor development in the colon.


Subject(s)
Colorectal Neoplasms , Streptococcal Infections , Streptococcus gallolyticus subspecies gallolyticus , Humans , Colorectal Neoplasms/microbiology , Streptococcus , Gene Expression Profiling , Streptococcal Infections/microbiology , Streptococcus gallolyticus/genetics
2.
Microbiol Spectr ; : e0508522, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36951576

ABSTRACT

Streptococcus gallolyticus subsp. gallolyticus (SGG) is an opportunistic gut pathogen associated with colorectal cancer. We previously showed that colonization of the murine colon by SGG in tumoral conditions was strongly enhanced by the production of gallocin A, a two-peptide bacteriocin. Here, we aimed to characterize the mechanisms of its action and resistance. Using a genetic approach, we demonstrated that gallocin A is composed of two peptides, GllA1 and GllA2, which are inactive alone and act together to kill "target" bacteria. We showed that gallocin A can kill phylogenetically close relatives of the pathogen. Importantly, we demonstrated that gallocin A peptides can insert themselves into membranes and permeabilize lipid bilayer vesicles. Next, we showed that the third gene of the gallocin A operon, gip, is necessary and sufficient to confer immunity to gallocin A. Structural modeling of GllA1 and GllA2 mature peptides suggested that both peptides form alpha-helical hairpins stabilized by intramolecular disulfide bridges. The presence of a disulfide bond in GllA1 and GllA2 was confirmed experimentally. Addition of disulfide-reducing agents abrogated gallocin A activity. Likewise, deletion of a gene encoding a surface protein with a thioredoxin-like domain impaired the ability of gallocin A to kill Enterococcus faecalis. Structural modeling of GIP revealed a hairpin-like structure strongly resembling those of the GllA1 and GllA2 mature peptides, suggesting a mechanism of immunity by competition with GllA1/2. Finally, identification of other class IIb bacteriocins exhibiting a similar alpha-helical hairpin fold stabilized with an intramolecular disulfide bridge suggests the existence of a new subclass of class IIb bacteriocins. IMPORTANCE Streptococcus gallolyticus subsp. gallolyticus (SGG), previously named Streptococcus bovis biotype I, is an opportunistic pathogen responsible for invasive infections (septicemia, endocarditis) in elderly people and is often associated with colon tumors. SGG is one of the first bacteria to be associated with the occurrence of colorectal cancer in humans. Previously, we showed that tumor-associated conditions in the colon provide SGG with an ideal environment to proliferate at the expense of phylogenetically and metabolically closely related commensal bacteria such as enterococci (1). SGG takes advantage of CRC-associated conditions to outcompete and substitute commensal members of the gut microbiota using a specific bacteriocin named gallocin, recently renamed gallocin A following the discovery of gallocin D in a peculiar SGG isolate. Here, we showed that gallocin A is a two-peptide bacteriocin and that both GllA1 and GllA2 peptides are required for antimicrobial activity. Gallocin A was shown to permeabilize bacterial membranes and kill phylogenetically closely related bacteria such as most streptococci, lactococci, and enterococci, probably through membrane pore formation. GllA1 and GllA2 secreted peptides are unusually long (42 and 60 amino acids long) and have very few charged amino acids compared to well-known class IIb bacteriocins. In silico modeling revealed that both GllA1 and GllA2 exhibit a similar hairpin-like conformation stabilized by an intramolecular disulfide bond. We also showed that the GIP immunity peptide forms a hairpin-like structure similar to GllA1/GllA2. Thus, we hypothesize that GIP blocks the formation of the GllA1/GllA2 complex by interacting with GllA1 or GllA2. Gallocin A may constitute the first class IIb bacteriocin which displays disulfide bridges important for its structure and activity and might be the founding member of a subtype of class IIb bacteriocins.

3.
J Bacteriol ; 203(20): e0022121, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34309397

ABSTRACT

Enterococcus faecalis, a multiple antibiotic-resistant Gram-positive bacterium, has emerged as a serious nosocomial pathogen. Here, we used a genetic approach to characterize the strategies used by E. faecalis to fulfill its requirements for endogenous fatty acid (FA) synthesis in vitro and in vivo. The type II fatty acid synthesis (FASII) pathway is encoded by two operons and two monocistronic genes. Expression of all of these genes is repressed by exogenous FAs, which are incorporated into the E. faecalis membrane and modify its composition. Deletion of nine genes of the 12-gene operon abolished growth in an FA-free medium. Addition of serum, which is lipid rich, restored growth. Interestingly, the E. faecalis membrane contains cyclic fatty acids that modify membrane properties but that are unavailable in host serum. The cfa gene that encodes the cyclopropanation process is located in a locus independent of the FASII genes. Its deletion did not alter growth under the conditions tested, but yielded bacteria devoid of cyclic FAs. No differences were observed between mice infected with wild-type (WT) or with FASII or cyclopropanation mutant strains, in terms of bacterial loads in blood, liver, spleen, or kidneys. We conclude that in E. faecalis, neither FASII nor cyclopropanation enzymes are suitable antibiotic targets. IMPORTANCE Membrane lipid homeostasis is crucial for bacterial physiology, adaptation, and virulence. Fatty acids are constituents of the phospholipids that are essential membrane components. Most bacteria incorporate exogenous fatty acids into their membranes. Enterococcus faecalis has emerged as a serious nosocomial pathogen that is responsible for urinary tract infections, bacteremia, and endocarditis and is intrinsically resistant to numerous antibiotics. E. faecalis synthesizes saturated and unsaturated fatty acids, as well as cyclic fatty acids that are not found in the human host. Here, we characterized mutant strains deficient in fatty acid synthesis and modification using genetic, biochemical, and in vivo approaches. We conclude that neither the fatty acid synthesis pathway nor the cyclopropanation enzyme are suitable targets for E. faecalis antibiotic development.


Subject(s)
Bacterial Proteins/metabolism , Cyclopropanes/metabolism , Enterococcus faecalis/metabolism , Fatty Acids/biosynthesis , Methyltransferases/metabolism , Animals , Bacterial Proteins/genetics , Culture Media , Cyclopropanes/chemistry , DNA, Bacterial/genetics , Enterococcus faecalis/genetics , Female , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Humans , Methyltransferases/genetics , Mice , Mice, Inbred BALB C , Serum
4.
mBio ; 12(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33402539

ABSTRACT

Bacteriocins are natural antimicrobial peptides produced by bacteria to kill closely related competitors. The opportunistic pathogen Streptococcus gallolyticus subsp. gallolyticus was recently shown to outcompete commensal enterococci of the murine microbiota under tumoral conditions thanks to the production of a two-peptide bacteriocin named gallocin. Here, we identified four genes involved in the regulatory control of gallocin in S. gallolyticus subsp. gallolyticus UCN34 that encode a histidine kinase/response regulator two-component system (BlpH/BlpR), a secreted peptide (GSP [gallocin-stimulating peptide]), and a putative regulator of unknown function (BlpS). While BlpR is a typical 243-amino-acid (aa) response regulator possessing a phospho-receiver domain and a LytTR DNA-binding domain, BlpS is a 108-aa protein containing only a LytTR domain. Our results showed that the secreted peptide GSP activates the dedicated two-component system BlpH/BlpR to induce gallocin transcription. A genome-wide transcriptome analysis indicates that this regulatory system (GSP-BlpH/BlpR) is specific for bacteriocin production. Importantly, as opposed to BlpR, BlpS was shown to repress gallocin gene transcription. A conserved operator DNA sequence of 30 bp was found in all promoter regions regulated by BlpR and BlpS. Electrophoretic mobility shift assays (EMSA) and footprint assays showed direct and specific binding of BlpS and BlpR to various regulated promoter regions in a dose-dependent manner on this conserved sequence. Gallocin expression appears to be tightly controlled in S. gallolyticus subsp. gallolyticus by quorum sensing and antagonistic activity of 2 LytTR-containing proteins. Competition experiments in gut microbiota medium and 5% CO2 to mimic intestinal conditions demonstrate that gallocin is functional under these in vivo-like conditions.IMPORTANCEStreptococcus gallolyticus subsp. gallolyticus, formerly known as Streptococcus bovis biotype I, is an opportunistic pathogen causing septicemia and endocarditis in the elderly often associated with asymptomatic colonic neoplasia. Recent studies indicate that S. gallolyticus subsp. gallolyticus is both a driver and a passenger of colorectal cancer. We previously showed that S. gallolyticus subsp. gallolyticus produces a bacteriocin, termed gallocin, enabling colonization of the colon under tumoral conditions by outcompeting commensal members of the murine microbiota such as Enterococcus faecalis Here, we identified and extensively characterized a four-component system that regulates gallocin production. Gallocin gene transcription is activated by a secreted peptide pheromone (GSP) and a two-component signal transduction system composed of a transmembrane histidine kinase receptor (BlpH) and a cytosolic response regulator (BlpR). Finally, a DNA-binding protein (BlpS) was found to repress gallocin genes transcription, likely by antagonizing BlpR. Understanding gallocin regulation is crucial to prevent S. gallolyticus subsp. gallolyticus colon colonization under tumoral conditions.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriocins/genetics , Gene Expression Regulation, Bacterial , Streptococcus gallolyticus/genetics , Streptococcus gallolyticus/metabolism , DNA-Binding Proteins/metabolism , Gastrointestinal Microbiome , Gene Expression Profiling , Genes, Bacterial/genetics , Genome, Bacterial , Histidine Kinase/genetics , Histidine Kinase/metabolism , Quorum Sensing , Streptococcal Infections/microbiology , Transcriptome
5.
mBio ; 12(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33402540

ABSTRACT

Streptococcus gallolyticus subsp. gallolyticus is an emerging opportunistic pathogen responsible for septicemia and endocarditis in the elderly. Invasive infections by S. gallolyticus subsp. gallolyticus are strongly linked to the occurrence of colorectal cancer (CRC). It was previously shown that increased secondary bile salts under CRC conditions enhance the bactericidal activity of gallocin, a bacteriocin produced by S. gallolyticus subsp. gallolyticus, enabling it to colonize the mouse colon by outcompeting resident enterococci (L. Aymeric, F. Donnadieu, C. Mulet, L. du Merle, et al., Proc Natl Acad Sci U S A 115:E283-E291, 2018, https://doi.org/10.1073/pnas.1715112115). In a separate study, we showed that S. gallolyticus subsp. gallolyticus produces and secretes a 21-mer peptide that activates bacteriocin production (A. Proutière, L. du Merle, B. Périchon, H. Varet, et al., mBio 11:e03187-20, 2020, https://doi.org/10.1128/mBio.03187-20). This peptide was named CSP because of its sequence similarity with competence-stimulating peptides found in other streptococci. Here, we demonstrate that CSP is a bona fide quorum sensing peptide involved in activation of gallocin gene transcription. We therefore refer to CSP as GSP (gallocin-stimulating peptide). GSP displays some unique features, since its N-terminal amino acid lies three residues after the double glycine leader sequence. Here, we set out to investigate the processing and export pathway that leads to mature GSP. Heterologous expression in Lactococcus lactis of the genes encoding GSP and the BlpAB transporter is sufficient to produce the 21-mer form of GSP in the supernatant, indicating that S. gallolyticus subsp. gallolyticus BlpAB displays an atypical cleavage site. We also conducted the first comprehensive structure-activity relationship (SAR) analysis of S. gallolyticus subsp. gallolyticus GSP to identify its key structural features and found that unlike many other similar streptococci signaling peptides (such as CSPs), nearly half of the mature GSP sequence can be removed (residues 1 to 9) without significantly impacting the peptide activity.IMPORTANCEStreptococcus gallolyticus subsp. gallolyticus is an opportunistic pathogen associated with colorectal cancer (CRC) and endocarditis. S. gallolyticus subsp. gallolyticus utilizes quorum sensing (QS) to regulate the production of a bacteriocin (gallocin) and gain a selective advantage in colonizing the colon. In this article, we report (i) the first structure-activity relationship study of the S. gallolyticus subsp. gallolyticus QS pheromone that regulates gallocin production, (ii) evidence that the active QS pheromone is processed to its mature form by a unique ABC transporter and not processed by an extracellular protease, and (iii) supporting evidence of interspecies interactions between streptococcal pheromones. Our results revealed the minimal pheromone scaffold needed for gallocin activation and uncovered unique interactions between two streptococcal QS signals that warrant further study.


Subject(s)
Bacteriocins/metabolism , Bodily Secretions/metabolism , Peptides/metabolism , Quorum Sensing/physiology , Streptococcus gallolyticus/metabolism , ATP-Binding Cassette Transporters , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriocins/genetics , Gene Expression Regulation, Bacterial , Membrane Transport Proteins/metabolism , Peptide Hydrolases/metabolism , Pheromones/metabolism , Signal Transduction , Streptococcus gallolyticus/genetics , Transcriptome
6.
Microbes Infect ; 22(1): 55-59, 2020.
Article in English | MEDLINE | ID: mdl-31837399

ABSTRACT

Streptococcus gallolyticus is an opportunistic pathogen responsible for septicemia and endocarditis. We report that S. gallolyticus UCN34 adheres and crosses epithelial monolayers in a Pil3 dependent manner. Confocal images revealed a paracellular passage. Both the Δpil3 mutant and the Pil3+ overexpressing variant were unable to cross Caco-2 and T84 barriers. However, combining live Δpil3 mutant with fixed Pil3+ variant in a 9:1 ratio allowed efficient translocation of the Δpil3 mutant. These results demonstrate that heterogeneous expression of Pil3 plays a key role for UCN34 translocation across the intestinal barrier. Through this skilful strategy, S. gallolyticus probably evade host immune responses.


Subject(s)
Bacterial Translocation , Epithelial Cells/microbiology , Fimbriae, Bacterial/genetics , Streptococcus gallolyticus/physiology , Bacterial Adhesion , Caco-2 Cells , Cell Line, Tumor , Fimbriae, Bacterial/metabolism , Genetic Heterogeneity , Humans , Mutation
7.
Article in English | MEDLINE | ID: mdl-29632009

ABSTRACT

Aspergillus fumigatus can cause pulmonary aspergillosis in immunocompromised patients and is associated with a high mortality rate due to a lack of reliable treatment options. This opportunistic pathogen requires zinc in order to grow and cause disease. Novel compounds that interfere with fungal zinc metabolism may therefore be of therapeutic interest. We screened chemical libraries containing 59,223 small molecules using a resazurin assay that compared their effects on an A. fumigatus wild-type strain grown under zinc-limiting conditions and on a zinc transporter knockout strain grown under zinc-replete conditions to identify compounds affecting zinc metabolism. After a first screen, 116 molecules were selected whose inhibitory effects on fungal growth were further tested by using luminescence assays and hyphal length measurements to confirm their activity, as well as by toxicity assays on HeLa cells and mice. Six compounds were selected following a rescreening, of which two were pyrazolones, two were porphyrins, and two were polyaminocarboxylates. All three groups showed good in vitro activity, but only one of the polyaminocarboxylates was able to significantly improve the survival of immunosuppressed mice suffering from pulmonary aspergillosis. This two-tier screening approach led us to the identification of a novel small molecule with in vivo fungicidal effects and low murine toxicity that may lead to the development of new treatment options for fungal infections by administration of this compound either as a monotherapy or as part of a combination therapy.


Subject(s)
Antifungal Agents/therapeutic use , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/pathogenicity , Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/metabolism , Zinc/metabolism , Animals , Disease Models, Animal , Luminescent Measurements , Mice , Microbial Sensitivity Tests , Pyrazolones/therapeutic use
8.
Proc Natl Acad Sci U S A ; 115(2): E283-E291, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29279402

ABSTRACT

Colonization by Streptococcus gallolyticus subsp. gallolyticus (SGG) is strongly associated with the occurrence of colorectal cancer (CRC). However, the factors leading to its successful colonization are unknown, and whether SGG influences the oncogenic process or benefits from the tumor-prone environment to prevail remains an open question. Here, we elucidate crucial steps that explain how CRC favors SGG colonization. By using mice genetically prone to CRC, we show that SGG colonization is 1,000-fold higher in tumor-bearing mice than in normal mice. This selective advantage occurs at the expense of resident intestinal enterococci. An SGG-specific locus encoding a bacteriocin ("gallocin") is shown to kill enterococci in vitro. Importantly, bile acids strongly enhance this bacteriocin activity in vivo, leading to greater SGG colonization. Constitutive activation of the Wnt pathway, one of the earliest signaling alterations in CRC, and the decreased expression of the bile acid apical transporter gene Slc10A2, as an effect of the Apc founding mutation, may thereby sustain intestinal colonization by SGG. We conclude that CRC-specific conditions promote SGG colonization of the gut by replacing commensal enterococci in their niche.


Subject(s)
Colorectal Neoplasms/metabolism , Gastrointestinal Tract/microbiology , Streptococcus gallolyticus/physiology , Adenoma , Animals , Bacteriocins/genetics , Bacteriocins/metabolism , Bile Acids and Salts/metabolism , Gene Expression Regulation , Humans , Mice , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Symporters/genetics , Symporters/metabolism
9.
PLoS One ; 12(1): e0169840, 2017.
Article in English | MEDLINE | ID: mdl-28107386

ABSTRACT

The widely spread Streptococcus agalactiae (also known as Group B Streptococcus, GBS) "hypervirulent" ST17 clone is strongly associated with neonatal meningitis. The PI-2b locus is mainly found in ST17 strains but is also present in a few non ST17 human isolates such as the ST-7 prototype strain A909. Here, we analysed the expression of the PI-2b pilus in the ST17 strain BM110 as compared to the non ST17 A909. Comparative genome analyses revealed the presence of a 43-base pair (bp) hairpin-like structure in the upstream region of PI-2b operon in all 26 ST17 genomes, which was absent in the 8 non-ST17 strains carrying the PI-2b locus. Deletion of this 43-bp sequence in strain BM110 resulted in a 3- to 5-fold increased transcription of PI-2b. Characterization of PI-2b promoter region in A909 and BM110 strains was carried out by RNAseq, primer extension, qRT-PCR and transcriptional fusions with gfp as reporter gene. Our results indicate the presence of a single promoter (Ppi2b) with a transcriptional start site (TSS) mapped 37 bases upstream of the start codon of the first PI-2b gene. The large operon of 16 genes located upstream of PI-2b codes for the group B carbohydrate (also known as antigen B), a major constituent of the bacterial cell wall. We showed that the hairpin sequence located between antigen B and PI-2b operons is a transcriptional terminator. In A909, increased expression of PI-2b probably results from read-through transcription from antigen B operon. In addition, we showed that an extended 5' promoter region is required for maximal transcription of gfp as a reporter gene in S. agalactiae from Ppi2b promoter. Gene reporter assays performed in Lactococcus lactis strain NZ9000, a related non-pathogenic Gram-positive species, revealed that GBS-specific regulatory factors are required to drive PI-2b transcription. PI-2b expression is up-regulated in the BM110ΔcovR mutant as compared to the parental BM110 strain, but this effect is probably indirect. Collectively, our results indicate that PI-2b expression is regulated in GBS ST17 strains, which may confer a selective advantage in the human host either by reducing host immune responses and/or increasing their dissemination potential.


Subject(s)
Genes, Bacterial , Streptococcus agalactiae/genetics , Virulence/genetics , Codon, Initiator , Fimbriae Proteins/genetics , Fimbriae, Bacterial/metabolism , Gene Deletion , Operon , Streptococcus agalactiae/pathogenicity , Transcription, Genetic
10.
Gut Microbes ; 7(6): 526-532, 2016 11.
Article in English | MEDLINE | ID: mdl-27656949

ABSTRACT

Streptococcus gallolyticus is a commensal bacterium responsible for infectious endocarditis in the elderly, which has frequently been associated with colonic carcinoma. Whether this species is a cause or a consequence of colorectal cancer remains unknown. We recently demonstrated that S. gallolyticus Pil3 pilus is required for adhesion to colonic mucus and for colonization of mouse distal colon. We show here that Pil3 pilus binds equally well to human colonic mucins derived from HT29-MTX cells and to human stomach mucins from healthy donors. In addition, we have found that Pil3 also binds to human fibrinogen, which expands the repertoire of Pil3 host ligands.


Subject(s)
Bacterial Proteins/metabolism , Fibrinogen/metabolism , Fimbriae Proteins/metabolism , Intestines/microbiology , Mucins/metabolism , Streptococcal Infections/metabolism , Streptococcal Infections/microbiology , Streptococcus gallolyticus/metabolism , Animals , Bacterial Adhesion , Bacterial Proteins/genetics , Cell Line , Fimbriae Proteins/genetics , Humans , Intestinal Mucosa/metabolism , Mice , Streptococcus gallolyticus/genetics
11.
J Infect Dis ; 212(10): 1646-55, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26014801

ABSTRACT

Streptococcus gallolyticus is an increasing cause of bacteremia and infective endocarditis in the elderly. Several epidemiological studies have associated the presence of this bacterium with colorectal cancer. We have studied the interaction of S. gallolyticus with human colonic cells. S. gallolyticus strain UCN34, adhered better to mucus-producing cells such as HT-29-MTX than to the parental HT-29 cells. Attachment to colonic mucus is dependent on the pil3 pilus operon, which is heterogeneously expressed in the wild-type UCN34 population. We constructed a pil3 deletion mutant in a Pil3 overexpressing variant (Pil3+) and were able to demonstrate the role of Pil3 pilus in binding to colonic mucus. Importantly, we showed that pil3 deletion mutant was unable to colonize mice colon as compared to the isogenic Pil3+ variant. Our findings establish for the first time a murine model of intestinal colonization by S. gallolyticus.


Subject(s)
Bacterial Adhesion , Colon/microbiology , Epithelial Cells/microbiology , Fimbriae, Bacterial/metabolism , Mucus/microbiology , Streptococcal Infections/microbiology , Streptococcus/physiology , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Animals , Cell Line , Fimbriae Proteins/genetics , Fimbriae, Bacterial/genetics , Gene Deletion , Gene Expression , Genes, Bacterial , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mucus/metabolism , Operon , Streptococcus/genetics , Streptococcus/metabolism
12.
Nucleic Acids Res ; 41(10): 5469-82, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23563153

ABSTRACT

Pathogenic Escherichia coli strains carrying the afa-8 gene cluster are frequently associated with extra-intestinal infections in humans and animals. The afa-8 A to E genes determine the formation of an afimbrial adhesive sheath consisting of the AfaD-VIII invasin and the AfaE-VIII adhesin at the bacterial cell surface. This structure is thought to be required for host colonization. We characterized a new gene encoding the small RNA AfaR, which is transcribed in cis from the complementary strand of the 3' untranslated region of the afaD messenger RNA, within the afaD-afaE intercistronic region. AfaR is a trans-acting Hfq-dependent antisense small RNA that binds the 5' untranslated region of the afaD messenger RNA, initiating several ribonuclease E-dependent cleavages, thereby downregulating production of the AfaD-VIII invasin. AfaR transcription is dependent on σ(E), a member of the stress response family of extracytoplasmic alternative sigma factors. We found that the AfaR-dependent regulatory pathway was controlled by temperature, allowing the production of the AfaD-VIII invasin at temperatures above 37 °C. Our findings suggest that the entry of afa-8-positive pathogenic E. coli strains into epithelial cells is tightly regulated by the AfaR small RNA.


Subject(s)
Adhesins, Escherichia coli/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , RNA, Small Untranslated/metabolism , Adhesins, Escherichia coli/metabolism , Base Sequence , Endoribonucleases/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/physiology , Host Factor 1 Protein/physiology , Molecular Sequence Data , Multigene Family , Promoter Regions, Genetic , RNA Stability , RNA, Antisense/metabolism , RNA, Messenger/metabolism , Sigma Factor/metabolism , Temperature , Transcription, Genetic
13.
Infect Immun ; 80(8): 2655-66, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22615242

ABSTRACT

Uropathogenic Escherichia coli (UPEC) strains are a leading cause of infections in humans, but the mechanisms governing host colonization by this bacterium remain poorly understood. Previous studies have identified numerous gene clusters encoding proteins involved in sugar transport, in pathogen-specific islands. We investigated the role in fitness and virulence of the vpe operon encoding an EII complex of the phosphotransferase (PTS) system, which is found more frequently in human strains from infected urine and blood (45%) than in E. coli isolated from healthy humans (15%). We studied the role of this locus in vivo, using the UPEC E. coli strain AL511, mutants, and complemented derivatives in two experimental mouse models of infection. Mutant strains displayed attenuated virulence in a mouse model of sepsis. A role in kidney colonization was also demonstrated by coinfection experiments in a mouse model of pyelonephritis. Electron microscopy examinations showed that the vpeBC mutant produced much smaller amounts of a capsule-like surface material than the wild type, particularly when growing in human urine. Complementation of the vpeBC mutation led to an increase in the amount of exopolysaccharide, resistance to serum killing, and virulence. It was therefore clear that the loss of vpe genes was responsible for all the observed phenotypes. We also demonstrated the involvement of the vpe locus in gut colonization in the streptomycin-treated mouse model of intestinal colonization. These findings confirm that carbohydrate transport and metabolism underlie the ability of UPEC strains to colonize the host intestine and to infect various host sites.


Subject(s)
Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Membrane Transport Proteins/metabolism , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Uropathogenic Escherichia coli/enzymology , Uropathogenic Escherichia coli/pathogenicity , Animals , Bacteriological Techniques , Carbohydrate Metabolism , Escherichia coli Proteins/genetics , Female , Fermentation , Gene Deletion , Humans , Intestines/microbiology , Membrane Transport Proteins/genetics , Mice , Mice, Inbred CBA , Molecular Sequence Data , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Urine/microbiology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism , Virulence
14.
Environ Microbiol ; 14(8): 1844-54, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22118225

ABSTRACT

Bacteriophages have been known to be present in the gut for many years, but studies of relationships between these viruses and their hosts in the intestine are still in their infancy. We isolated three bacteriophages specific for an enteroaggregative O104:H4 Escherichia coli (EAEC) strain responsible for diarrhoeal diseases in humans. We studied the replication of these bacteriophages in vitro and in vivo in a mouse model of gut colonization. Each bacteriophage was able to replicate in vitro in both aerobic and anaerobic conditions. Each bacteriophage individually reduced biofilms formed on plastic pegs and a cocktail of the three bacteriophages was found to be more efficient. The cocktail was also able to infect bacterial aggregates formed on the surface of epithelial cells. In the mouse intestine, bacteriophages replicated for at least 3 weeks, provided the host was present, with no change in host levels in the faeces. This model of stable and continuous viral replication provides opportunities for studying the long-term coevolution of virulent bacteriophages with their hosts within a mammalian polymicrobial ecosystem.


Subject(s)
Bacteriophages/physiology , Escherichia coli/virology , Animals , Bacteriophages/classification , Bacteriophages/isolation & purification , Bacteriophages/ultrastructure , Biofilms , Caudovirales/classification , Caudovirales/isolation & purification , Caudovirales/physiology , Caudovirales/ultrastructure , Feces/microbiology , Feces/virology , Host Specificity , Intestines/microbiology , Intestines/virology , Mice , Virus Replication
15.
Nucleic Acids Res ; 40(7): 2846-61, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22139924

ABSTRACT

Characterization of small non-coding ribonucleic acids (sRNA) among the large volume of data generated by high-throughput RNA-seq or tiling microarray analyses remains a challenge. Thus, there is still a need for accurate in silico prediction methods to identify sRNAs within a given bacterial species. After years of effort, dedicated software were developed based on comparative genomic analyses or mathematical/statistical models. Although these genomic analyses enabled sRNAs in intergenic regions to be efficiently identified, they all failed to predict antisense sRNA genes (asRNA), i.e. RNA genes located on the DNA strand complementary to that which encodes the protein. The statistical models enabled any genomic region to be analyzed theorically but not efficiently. We present a new model for in silico identification of sRNA and asRNA candidates within an entire bacterial genome. This model was successfully used to analyze the Gram-negative Escherichia coli and Gram-positive Streptococcus agalactiae. In both bacteria, numerous asRNAs are transcribed from the complementary strand of genes located in pathogenicity islands, strongly suggesting that these asRNAs are regulators of the virulence expression. In particular, we characterized an asRNA that acted as an enhancer-like regulator of the type 1 fimbriae production involved in the virulence of extra-intestinal pathogenic E. coli.


Subject(s)
Computer Simulation , Escherichia coli/genetics , Genome, Bacterial , RNA, Antisense/metabolism , Streptococcus agalactiae/genetics , Antigens, Bacterial/genetics , Base Pairing , Biofilms , Escherichia coli/pathogenicity , Escherichia coli/physiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/physiology , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Gene Expression Regulation, Bacterial , Genomic Islands , Host Factor 1 Protein/physiology , RNA, Antisense/chemistry , RNA, Antisense/genetics , RNA, Messenger/metabolism , Regulon , Streptococcus agalactiae/pathogenicity
16.
PLoS One ; 4(11): e8029, 2009 Nov 25.
Article in English | MEDLINE | ID: mdl-19946377

ABSTRACT

BACKGROUND: Nalidixic acid resistance among Salmonella Typhimurium clinical isolates has steadily increased, whereas the level of ciprofloxacin resistance remains low. The main objective of this study was to characterize the fluoroquinolone resistance mechanisms acquired in a S. Typhimurium mutant selected with ciprofloxacin from a susceptible isolate and to investigate its invasion ability. METHODOLOGY/PRINCIPAL FINDINGS: Three different amino acid substitutions were detected in the quinolone target proteins of the resistant mutant (MIC of ciprofloxacin, 64 microg/ml): D87G and G81C in GyrA, and a novel mutation, E470K, in ParE. A protein analysis revealed an increased expression of AcrAB/TolC and decreased expression of OmpC. Sequencing of the marRAB, soxRS, ramR and acrR operons did not show any mutation and neither did their expression levels in a microarray analysis. A decreased percentage of invasion ability was detected when compared with the susceptible clinical isolate in a gentamicin protection assay. The microarray results revealed a decreased expression of genes which play a role during the invasion process, such as hilA, invF and the flhDC operon. Of note was the impaired growth detected in the resistant strain. A strain with a reverted phenotype (mainly concerning the resistance phenotype) was obtained from the resistant mutant. CONCLUSIONS/SIGNIFICANCE: In conclusion, a possible link between fluoroquinolone resistance and decreased cell invasion ability may exist explaining the low prevalence of fluoroquinolone-resistant S. Typhimurium clinical isolates. The impaired growth may appear as a consequence of fluoroquinolone resistance acquisition and down-regulate the expression of the invasion genes.


Subject(s)
Drug Resistance, Bacterial , Fluoroquinolones/pharmacology , Mutation , Salmonella typhimurium/genetics , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Gene Expression Regulation, Bacterial , HeLa Cells , Humans , Models, Genetic , Nalidixic Acid/pharmacology , Neoplasm Invasiveness , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic
17.
Infect Immun ; 77(10): 4406-13, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19620340

ABSTRACT

The ability of some typical enteropathogenic Escherichia coli (EPEC) strains to adhere to, invade, and increase interleukin-8 (IL-8) production in intestinal epithelial cells in vitro has been demonstrated. However, few studies regarding these aspects have been performed with atypical EPEC (aEPEC) strains, which are emerging enteropathogens in Brazil. In this study, we evaluated a selected aEPEC strain (1711-4) of serotype O51:H40, the most prevalent aEPEC serotype in Brazil, in regard to its ability to adhere to and invade Caco-2 and T84 cells and to elicit IL-8 production in Caco-2 cells. The role of flagella in aEPEC 1711-4 adhesion, invasion, and IL-8 production was investigated by performing the same experiments with an isogenic aEPEC mutant unable to produce flagellin (FliC), the flagellum protein subunit. We demonstrated that this mutant (fliC mutant) had a marked decrease in the ability to adhere to T84 cells and invade both T84 and Caco-2 cells in gentamicin protection assays and by transmission electron microscopy. In addition, the aEPEC 1711-4 fliC mutant had a reduced ability to stimulate IL-8 production by Caco-2 cells in early (3-h) but not in late (24-h) infections. Our findings demonstrate that flagella of aEPEC 1711-4 are required for efficient adhesion, invasion, and early but not late IL-8 production in intestinal epithelial cells in vitro.


Subject(s)
Bacterial Adhesion , Enterocytes/immunology , Enterocytes/microbiology , Enteropathogenic Escherichia coli/immunology , Enteropathogenic Escherichia coli/pathogenicity , Flagella/physiology , Interleukin-8/metabolism , Brazil , Cell Line , Colony Count, Microbial , Cytoplasm/microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Enteropathogenic Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Flagellin , Gene Deletion , Humans , Microscopy, Electron , Molecular Sequence Data , Sequence Analysis, DNA
18.
Cell Microbiol ; 11(4): 616-28, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19134121

ABSTRACT

Escherichia coli is the leading cause of urinary tract infections, but the mechanisms governing renal colonization by this bacterium remain poorly understood. We investigated the ability of 13 E. coli strains isolated from the urine of patients with pyelonephritis and cystitis and normal stools to invade collecting duct cells, which constitute the first epithelium encountered by bacteria ascending from the bladder. The AL511 clinical isolate adhered to mouse collecting duct mpkCCD(cl4) cells, used as a model of renal cell invasion, and was able to enter and persist within these cells. Previous studies have shown that bacterial flagella play an important role in host urinary tract colonization, but the role of flagella in the interaction of E. coli with renal epithelial cells remains unclear. An analysis of the ability of E. coli AL511 mutants to invade renal cells showed that flagellin played a key role in bacterial entry. Both flagellum filament assembly and the motor proteins MotA and MotB appeared to be required for E. coli AL511 uptake into collecting duct cells. These findings indicate that pyelonephritis-associated E. coli strains may invade renal collecting duct cells and that flagellin may act as an invasin in this process.


Subject(s)
Epithelial Cells/microbiology , Escherichia coli/pathogenicity , Flagella/physiology , Host-Pathogen Interactions , Kidney Tubules, Collecting , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cystitis/microbiology , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/physiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Flagella/metabolism , Flagellin/metabolism , Humans , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/microbiology , Mice , Pyelonephritis/microbiology , Urine/microbiology
19.
Infect Immun ; 77(4): 1442-50, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19168744

ABSTRACT

We previously suggested that the ability to metabolize deoxyribose, a phenotype encoded by the deoK operon, is associated with the pathogenic potential of Escherichia coli strains. Carbohydrate metabolism is thought to provide the nutritional support required for E. coli to colonize the intestine. We therefore investigated the role of deoxyribose catabolism in the colonization of the gut, which acts as a reservoir, by pathogenic E. coli strains. Molecular and biochemical characterization of 1,221 E. coli clones from various collections showed this biochemical trait to be common in the E. coli species (33.6%). However, multivariate analysis evidenced a higher prevalence of sugar-metabolizing E. coli clones in the stools of patients from countries in which intestinal diseases are endemic. Diarrhea processes frequently involve the destruction of intestinal epithelia, so it is plausible that such clones may be positively selected for in intestines containing abundant DNA, and consequently deoxyribose. Statistical analysis also indicated that symptomatic clinical disorders and the presence of virulence factors specific to extraintestinal pathogenic E. coli were significantly associated with an increased risk of biological samples and clones testing positive for deoxyribose. Using the streptomycin-treated-mouse model of intestinal colonization, we demonstrated the involvement of the deoK operon in gut colonization by two pathogenic isolates (one enteroaggregative and one uropathogenic strain). These results, indicating that deoxyribose availability promotes pathogenic E. coli growth during host colonization, suggest that the acquisition of this trait may be an evolutionary step enabling these pathogens to colonize and persist in the mammalian intestine.


Subject(s)
Deoxyribose/metabolism , Escherichia coli/pathogenicity , Intestines/microbiology , Adolescent , Adult , Animals , Colony Count, Microbial , Diarrhea/microbiology , Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Host-Pathogen Interactions , Humans , Mice , Operon , Young Adult
20.
J Immunol ; 177(7): 4773-84, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16982918

ABSTRACT

TLR4 plays a central role in resistance to pyelonephritis caused by uropathogenic Escherichia coli (UPEC). It has been suggested that renal tubule epithelial cells expressing TLRs may play a key role in inflammatory disorders and in initiating host defenses. In this study we used an experimental mouse model of ascending urinary tract infection to show that UPEC isolates preferentially adhered to the apical surface of medullary collecting duct (MCD) intercalated cells. UPEC-infected C3H/HeJ (Lps(d)) mice carrying an inactivating mutation of tlr4 failed to clear renal bacteria and exhibited a dramatic slump in proinflammatory mediators as compared with infected wild-type C3H/HeOuJ (Lps(n)) mice. However, the level of expression of the leukocyte chemoattractants MIP-2 and TNF-alpha still remained greater in UPEC-infected than in naive C3H/HeJ (Lps(d)) mice. Using primary cultures of microdissected Lps(n) MCDs that expressed TLR4 and its accessory molecules MD2, MyD88, and CD14, we also show that UPECs stimulated both a TLR4-mediated, MyD88-dependent, TIR domain-containing adaptor-inducing IFN-beta-independent pathway and a TLR4-independent pathway, leading to bipolarized secretion of MIP-2. Stimulation by UPECs of the TLR4-mediated pathway in Lps(n) MCDs leads to the activation of NF-kappaB, and MAPK p38, ERK1/2, and JNK. In addition, UPECs stimulated TLR4-independent signaling by activating a TNF receptor-associated factor 2-apoptosis signal-regulatory kinase 1-JNK pathway. These findings demonstrate that epithelial collecting duct cells are actively involved in the initiation of an immune response via several distinct signaling pathways and suggest that intercalated cells play an active role in the recognition of UPECs colonizing the kidneys.


Subject(s)
Epithelial Cells/microbiology , Escherichia coli/immunology , Kidney Tubules, Collecting/microbiology , Pyelonephritis/immunology , Signal Transduction/immunology , Toll-Like Receptor 4/immunology , Animals , Blotting, Western , Chemokines/biosynthesis , Chemokines/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Epithelial Cells/immunology , Epithelial Cells/metabolism , Female , Humans , Immunoblotting , Inflammation/immunology , Inflammation/microbiology , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/immunology , Mice , Mice, Mutant Strains , Microscopy, Electron, Scanning , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Pyelonephritis/microbiology , Reverse Transcriptase Polymerase Chain Reaction , Toll-Like Receptor 4/metabolism , Urinary Tract Infections/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...