Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med ; 19(1): 217, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34587957

ABSTRACT

BACKGROUND: Stratifying dengue risk within endemic countries is crucial for allocating limited control interventions. Current methods of monitoring dengue transmission intensity rely on potentially inaccurate incidence estimates. We investigated whether incidence or alternate metrics obtained from standard, or laboratory, surveillance operations represent accurate surrogate indicators of the burden of dengue and can be used to monitor the force of infection (FOI) across urban centres. METHODS: Among those who reported and resided in 13 cities across the Philippines, we collected epidemiological data from all dengue case reports between 2014 and 2017 (N 80,043) and additional laboratory data from a cross-section of sampled case reports (N 11,906) between 2014 and 2018. At the city level, we estimated the aggregated annual FOI from age-accumulated IgG among the non-dengue reporting population using catalytic modelling. We compared city-aggregated FOI estimates to aggregated incidence and the mean age of clinically and laboratory diagnosed dengue cases using Pearson's Correlation coefficient and generated predicted FOI estimates using regression modelling. RESULTS: We observed spatial heterogeneity in the dengue average annual FOI across sampled cities, ranging from 0.054 [0.036-0.081] to 0.249 [0.223-0.279]. Compared to FOI estimates, the mean age of primary dengue infections had the strongest association (ρ -0.848, p value<0.001) followed by the mean age of those reporting with warning signs (ρ -0.642, p value 0.018). Using regression modelling, we estimated the predicted annual dengue FOI across urban centres from the age of those reporting with primary infections and revealed prominent spatio-temporal heterogeneity in transmission intensity. CONCLUSIONS: We show the mean age of those reporting with their first dengue infection or those reporting with warning signs of dengue represent superior indicators of the dengue FOI compared to crude incidence across urban centres. Our work provides a framework for national dengue surveillance to routinely monitor transmission and target control interventions to populations most in need.


Subject(s)
Dengue , Cities/epidemiology , Dengue/epidemiology , Humans , Incidence , Laboratories , Philippines/epidemiology
2.
BMC Med ; 18(1): 364, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33243267

ABSTRACT

BACKGROUND: In dengue-endemic countries, targeting limited control interventions to populations at risk of severe disease could enable increased efficiency. Individuals who have had their first (primary) dengue infection are at risk of developing more severe secondary disease, thus could be targeted for disease prevention. Currently, there is no reliable algorithm for determining primary and post-primary (infection with more than one flavivirus) status from a single serum sample. In this study, we developed and validated an immune status algorithm using single acute serum samples from reporting patients and investigated dengue immuno-epidemiological patterns across the Philippines. METHODS: During 2015/2016, a cross-sectional sample of 10,137 dengue case reports provided serum for molecular (anti-DENV PCR) and serological (anti-DENV IgM/G capture ELISA) assay. Using mixture modelling, we re-assessed IgM/G seroprevalence and estimated functional, disease day-specific, IgG:IgM ratios that categorised the reporting population as negative, historical, primary and post-primary for dengue. We validated our algorithm against WHO gold standard criteria and investigated cross-reactivity with Zika by assaying a random subset for anti-ZIKV IgM and IgG. Lastly, using our algorithm, we explored immuno-epidemiological patterns of dengue across the Philippines. RESULTS: Our modelled IgM and IgG seroprevalence thresholds were lower than kit-provided thresholds. Individuals anti-DENV PCR+ or IgM+ were classified as active dengue infections (83.1%, 6998/8425). IgG- and IgG+ active dengue infections on disease days 1 and 2 were categorised as primary and post-primary, respectively, while those on disease days 3 to 5 with IgG:IgM ratios below and above 0.45 were classified as primary and post-primary, respectively. A significant proportion of post-primary dengue infections had elevated anti-ZIKV IgG inferring previous Zika exposure. Our algorithm achieved 90.5% serological agreement with WHO standard practice. Post-primary dengue infections were more likely to be older and present with severe symptoms. Finally, we identified a spatio-temporal cluster of primary dengue case reporting in northern Luzon during 2016. CONCLUSIONS: Our dengue immune status algorithm can equip surveillance operations with the means to target dengue control efforts. The algorithm accurately identified primary dengue infections who are at risk of future severe disease.


Subject(s)
Dengue Virus/pathogenicity , Dengue/epidemiology , Adolescent , Adult , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Male , Philippines , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...