Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Environ Radioact ; 226: 106455, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33161354

ABSTRACT

Atmospheric transport modeling has been used to interpret the unprecedented number of multi-isotope detections of radioxenons observed during the six months of the qualification process by the Comprehensive Nuclear-Test-Ban Treaty Organization of the new SPALAX-NG system (Système de Prélèvement Automatique en Ligne avec l'Analyse du Xénon - Nouvelle Génération). Highest 133Xe activity concentrations were found to be systematically associated with the concomitant measurement of several other radioxenons at the prevailing wind direction of north/northeast pointing to the Institute for Radio Elements (IRE), a medical isotope production facility located in Fleurus (Belgium). The lowest 133Xe activity concentrations were not associated with a prevailing wind direction or other radioxenons, indicating the contribution of distant sources (global background). The IRE's average source terms for 133mXe and to a lesser extent for 133Xe (slightly overestimated by a factor of 1.7) showed good agreement with the literature values, while corrections by a factor of ~23 and ~53 were proposed for 131mXe and 135Xe since the initial values were underestimated. However, detections of 131mXe alone and some low-activity concentrations of 133Xe associated with only one of the other radioxenons could not be linked to the IRE releases. Analysis of these cases suggests the contribution of local source releases that have been difficult to identify to date. In addition to the global background, releases from such local sources, if not identified, could affect the analysis of the isotopic ratios measured following a nuclear test. The characterization of these local contributions is now possible owing to the capacity of the SPALAX-NG and other new generation measurements systems.


Subject(s)
Air Pollutants, Radioactive/analysis , Radiation Monitoring , Xenon Radioisotopes/analysis , Animals , Belgium , Europe , Family Characteristics
3.
J Environ Radioact ; 225: 106442, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33080418

ABSTRACT

The SPALAX-NG is a new-generation system that is designed to detect radioactive xenon at trace levels in the atmosphere following a nuclear explosion or civilian source release. This new system formed part of a validation program led by the Provisional Technical Secretary of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Organization. In this study, the first SPALAX-NG unit was tested for six months between October 2018 and April 2019 at the CEA/DIF premises near Paris, France. This test period provided an outstanding opportunity to illustrate the high level of detectability and reliability of the system. The data availability obtained over this period was approximately 99%, which was well above the CTBT Data Availability criteria of 95%. The data reliability was demonstrated by a comparison with a collocated SPALAX-1 unit (former version of SPALAX) and by re-measuring several samples at the CTBT-certified French laboratory FRL08. The high sensitivity to the detection of the four relevant radioxenon isotopes was fully demonstrated and enabled the recording of a major dataset for western Europe. A large set of isotopic ratios was measured, which enabled the discrimination criteria between civilian sources and nuclear test signatures to be refined.


Subject(s)
Air Pollutants, Radioactive/analysis , Radiation Monitoring , Xenon Radioisotopes/analysis , Animals , Europe , Family Characteristics , France , Reproducibility of Results
4.
J Environ Radioact ; 149: 43-50, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26197348

ABSTRACT

The SPALAX (Système de Prélèvement Automatique en Ligne avec l'Analyse du Xénon) is one of the systems used in the International Monitoring System of the Comprehensive Nuclear Test Ban Treaty (CTBT) to detect radioactive xenon releases following a nuclear explosion. Approximately 10 years after the industrialization of the first system, the CEA has developed the SPALAX New Generation, SPALAX-NG, with the aim of increasing the global sensitivity and reducing the overall size of the system. A major breakthrough has been obtained by improving the sampling stage and the purification/concentration stage. The sampling stage evolution consists of increasing the sampling capacity and improving the gas treatment efficiency across new permeation membranes, leading to an increase in the xenon production capacity by a factor of 2-3. The purification/concentration stage evolution consists of using a new adsorbent Ag@ZSM-5 (or Ag-PZ2-25) with a much larger xenon retention capacity than activated charcoal, enabling a significant reduction in the overall size of this stage. The energy consumption of the system is similar to that of the current SPALAX system. The SPALAX-NG process is able to produce samples of almost 7 cm(3) of xenon every 12 h, making it the most productive xenon process among the IMS systems.


Subject(s)
Air Pollutants, Radioactive/analysis , Radiation Monitoring/methods , Xenon Radioisotopes/analysis , Adsorption
5.
J Radioanal Nucl Chem ; 282(3): 731-735, 2009.
Article in English | MEDLINE | ID: mdl-26224898

ABSTRACT

Aerosol samples collected on filter media were analyzed using HPGe detectors employing varying background-reduction techniques in order to experimentally evaluate the opportunity to apply ultra-low background measurement methods to samples collected, for instance, by the Comprehensive Test Ban Treaty International Monitoring System (IMS). In this way, realistic estimates of the impact of low-background methodology on the sensitivity obtained in systems such as the IMS were assessed. The current detectability requirement of stations in the IMS is 30 µBq/m3 of air for 140Ba, which would imply ~106 fissions per daily sample. Importantly, this is for a fresh aerosol filter. One week of decay reduces the intrinsic background from radon daughters in the sample allowing much higher sensitivity measurement of relevant isotopes, including 131I. An experiment was conducted in which decayed filter samples were measured at a variety of underground locations using Ultra-Low Background (ULB) gamma spectroscopy technology. The impacts of the decay and ULB are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...