Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Blood ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657197

ABSTRACT

Thrombotic microangiopathy (TMA) is characterized by immunothrombosis and life-threatening organ failure, but the precise underlying mechanism driving its pathogenesis remains elusive. In this study, we hypothesized that gasdermin D (GSDMD), a pore-forming protein serving as the final downstream effector of pyroptosis/interleukin (IL)-1pathway, contributes to TMA and its consequences by amplifying neutrophil maturation and subsequent necrosis. Using a murine model of focal crystalline TMA, we found that Gsdmd-deficiency ameliorated immunothrombosis, acute tissue injury and failure. Gsdmd-/- mice exhibited a decrease in mature IL-1, as well as in neutrophil maturation, 2 integrin activation, and recruitment to TMA lesions, where they formed reduced neutrophil extracellular traps both in arteries and interstitial tissue. The GSDMD inhibitor disulfiram dose-dependently suppressed human neutrophil pyroptosis in response to cholesterol crystals. Experiments with GSDMD-deficient human induced pluripotent stem cell-derived neutrophils confirmed the involvement of GSDMD in neutrophil 2 integrin activation, maturation as well as pyroptosis. Both prophylactic and therapeutic administration of disulfiram protected mice from focal TMA, acute tissue injury and failure. Our data identify GSDMD as a key mediator of focal crystalline TMA and its consequences: ischemic tissue infarction and organ failure. GSDMD could potentially serve as a therapeutic target for systemic forms of TMA.

2.
Transfus Med Hemother ; 50(4): 321-329, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37767280

ABSTRACT

Introduction: Neutrophils promote chronic inflammation and release neutrophil extracellular traps (NETs) that can drive inflammatory responses. Inflammation influences progression of sickle cell disease (SCD), and a role for NETs has been suggested in the onset of vaso-occlusive crisis (VOC). We aimed to identify factors in the circulation of these patients that provoke NET release, with a focus on triggers associated with hemolysis. Methods: Paired serum and plasma samples during VOC and steady state of 18 SCD patients (HbSS/HbSß0-thal and HbSC/HbSß+-thal) were collected. Cell-free heme, hemopexin, and labile plasma iron have been measured in the plasma samples of the SCD patients. NETs formation by human neutrophils from healthy donors induced by serum of SCD patients was studied using confocal microscopy and staining for extracellular DNA using Sytox, followed by quantification of surface coverage using ImageJ. Results: Eighteen patients paired samples obtained during VOC and steady state were available (11 HbSS/HbSß0-thal and 7 HbSC/HbSß+-thal). We observed high levels of systemic heme and iron, concomitant with low levels of the heme-scavenger hemopexin in sera of patients with SCD, both during VOC and in steady state. In our in vitro experiments, neutrophils released NETs when exposed to sera from SCD patients. The release of NETs was associated with high levels of circulating iron in these sera. Although hemin triggered NET formation in vitro, addition of hemopexin to scavenge heme did not suppress NET release in SCD sera. By contrast, the iron scavengers deferoxamine and apotransferrin attenuated NET formation in a significant proportion of SCD sera. Discussion: Our results suggest that redox-active iron in the circulation of non-transfusion-dependent SCD patients activates neutrophils to release NETs, and hence, exerts a direct pro-inflammatory effect. Thus, we propose that chelation of iron requires further investigation as a therapeutic strategy in SCD.

3.
Nat Cardiovasc Res ; 2(3): 307-321, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37476204

ABSTRACT

Leukocytes and resident cells in the arterial wall contribute to atherosclerosis, especially at sites of disturbed blood flow. Expression of endothelial Tie1 receptor tyrosine kinase is enhanced at these sites, and attenuation of its expression reduces atherosclerotic burden and decreases inflammation. However, Tie2 tyrosine kinase function in atherosclerosis is unknown. Here we provide genetic evidence from humans and from an atherosclerotic mouse model to show that TIE2 is associated with protection from coronary artery disease. We show that deletion of Tie2, or both Tie2 and Tie1, in the arterial endothelium promotes atherosclerosis by increasing Foxo1 nuclear localization, endothelial adhesion molecule expression and accumulation of immune cells. We also show that Tie2 is expressed in a subset of aortic fibroblasts, and its silencing in these cells increases expression of inflammation-related genes. Our findings indicate that unlike Tie1, the Tie2 receptor functions as the dominant endothelial angiopoietin receptor that protects from atherosclerosis.

5.
Immunol Rev ; 314(1): 357-375, 2023 03.
Article in English | MEDLINE | ID: mdl-36315403

ABSTRACT

Over the past millennia, life expectancy has drastically increased. While a mere 25 years during Bronze and Iron ages, life expectancy in many European countries and in Japan is currently above 80 years. Such an increase in life expectancy is a result of improved diet, life style, and medical care. Yet, increased life span and aging also represent the most important non-modifiable risk factors for several pathologies including cardiovascular disease, neurodegenerative diseases, and cancer. In recent years, neutrophils have been implicated in all of these pathologies. Hence, this review provides an overview of how aging impacts neutrophil production and function and conversely how neutrophils drive aging-associated pathologies. Finally, we provide a perspective on how processes of neutrophil-driven pathologies in the context of aging can be targeted therapeutically.


Subject(s)
Aging , Neutrophils , Humans , Longevity , Life Expectancy , Risk Factors
6.
Nat Rev Nephrol ; 15(11): 671-692, 2019 11.
Article in English | MEDLINE | ID: mdl-31455889

ABSTRACT

Intravascular haemolysis is a fundamental feature of chronic hereditary and acquired haemolytic anaemias, including those associated with haemoglobinopathies, complement disorders and infectious diseases such as malaria. Destabilization of red blood cells (RBCs) within the vasculature results in systemic inflammation, vasomotor dysfunction, thrombophilia and proliferative vasculopathy. The haemoprotein scavengers haptoglobin and haemopexin act to limit circulating levels of free haemoglobin, haem and iron - potentially toxic species that are released from injured RBCs. However, these adaptive defence systems can fail owing to ongoing intravascular disintegration of RBCs. Induction of the haem-degrading enzyme haem oxygenase 1 (HO1) - and potentially HO2 - represents a response to, and endogenous defence against, large amounts of cellular haem; however, this system can also become saturated. A frequent adverse consequence of massive and/or chronic haemolysis is kidney injury, which contributes to the morbidity and mortality of chronic haemolytic diseases. Intravascular destruction of RBCs and the resulting accumulation of haemoproteins can induce kidney injury via a number of mechanisms, including oxidative stress and cytotoxicity pathways, through the formation of intratubular casts and through direct as well as indirect proinflammatory effects, the latter via the activation of neutrophils and monocytes. Understanding of the detailed pathophysiology of haemolysis-induced kidney injury offers opportunities for the design and implementation of new therapeutic strategies to counteract the unfavourable and potentially fatal effects of haemolysis on the kidney.


Subject(s)
Acute Kidney Injury/etiology , Hemolysis , Animals , Heme/adverse effects , Humans
7.
Thromb Haemost ; 119(4): 542-552, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30731493

ABSTRACT

Neutrophils and neutrophil extracellular traps (NETs) have a robust relationship with atherothrombotic disease risk, which led to the idea that interfering with the release of NETs therapeutically would ameliorate atherosclerosis. In human studies, acute coronary events and the pro-thrombotic state cause markedly elevated levels of circulating deoxyribonucleic acid (DNA) and chromatin, suggesting that DNase I might produce cardiovascular benefit. DNase I reproduced the phenotype of peptidylarginine deiminase 4 (PAD4) deficiency and showed a significant benefit for atherothrombotic disease in experimental mouse models. However, the mechanisms of benefit remain unclear. Insights into the mechanisms underlying NET release and atherogenic inflammation have come from transgenic mouse studies. In particular, the importance of neutrophil NET formation in promoting atherothrombotic disease has been shown and linked to profound pro-inflammatory and pro-thrombotic effects, complement activation and endothelial dysfunction. Recent studies have shown that myeloid deficiency of PAD4 leads to diminished NET formation, which in turn protects against atherosclerosis burden, propagation of its thrombotic complications and notably macrophage inflammation in plaques. In addition, oxidative stress and neutrophil cholesterol accumulation have emerged as important factors driving NET release, likely involving mitochondrial reactive oxidants and neutrophil inflammasome activation. Further elucidation of the mechanisms linking hyperlipidaemia to the release of NETs may lead to the development of new therapeutics specifically targeting atherogenic inflammation, with likely benefit for cardiovascular diseases.


Subject(s)
Atherosclerosis/pathology , Extracellular Traps , Inflammation/metabolism , Neutrophil Activation , Neutrophils/metabolism , Animals , Cholesterol/metabolism , Chromatin/chemistry , Complement Activation , DNA/chemistry , Deoxyribonuclease I/metabolism , Disease Models, Animal , Endothelium, Vascular/metabolism , Humans , Hyperlipidemias/metabolism , Mice , Mice, Transgenic , Oxidative Stress , Phenotype , Plaque, Atherosclerotic/prevention & control , Risk Factors , Thrombosis/metabolism
8.
Eur J Clin Invest ; 48 Suppl 2: e12919, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29543328

ABSTRACT

While the microscopic appearance of neutrophil extracellular traps (NETs) has fascinated basic researchers since its discovery, the (patho)physiological mechanisms triggering NET release, the disease relevance and clinical translatability of this unconventional cellular mechanism remained poorly understood. Here, we summarize and discuss current concepts of the mechanisms and disease relevance of NET formation.


Subject(s)
Extracellular Traps/physiology , Neutrophils/physiology , Autoimmune Diseases/physiopathology , Bacterial Infections/physiopathology , Cell Death/physiology , Forecasting , Humans , Mycoses/physiopathology , Signal Transduction/physiology
9.
J Immunol ; 196(9): 3686-94, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27016607

ABSTRACT

In response to microbial invasion, neutrophils release neutrophil extracellular traps (NETs) to trap and kill extracellular microbes. Alternatively, NET formation can result in tissue damage in inflammatory conditions and may perpetuate autoimmune disease. Intervention strategies that are aimed at modifying pathogenic NET formation should ideally preserve other neutrophil antimicrobial functions. We now show that signal inhibitory receptor on leukocytes-1 (SIRL-1) attenuates NET release by human neutrophils in response to distinct triggers, including opsonized Staphylococcus aureus and inflammatory danger signals. NET release has different kinetics depending on the stimulus, and rapid NET formation is independent of NADPH oxidase activity. In line with this, we show that NET release and reactive oxygen species production upon challenge with opsonized S. aureus require different signaling events. Importantly, engagement of SIRL-1 does not affect bacterially induced production of reactive oxygen species, and intracellular bacterial killing by neutrophils remains intact. Thus, our studies define SIRL-1 as an intervention point of benefit to suppress NET formation in disease while preserving intracellular antimicrobial defense.


Subject(s)
Cytoplasm/microbiology , Extracellular Traps/metabolism , Neutrophils/immunology , Receptors, Immunologic/immunology , Signal Transduction , Staphylococcus aureus/immunology , Extracellular Traps/immunology , Host-Pathogen Interactions , Humans , Kinetics , NADPH Oxidases/metabolism , Neutrophils/microbiology , Phagocytosis , Reactive Oxygen Species/metabolism , Staphylococcus aureus/physiology
11.
PLoS One ; 8(10): e78459, 2013.
Article in English | MEDLINE | ID: mdl-24205237

ABSTRACT

Neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of systemic Lupus erythematosus (SLE), since netting neutrophils release potentially immunogenic autoantigens including histones, LL37, human neutrophil peptide (HNP), and self-DNA. In turn, these NETs activate plasmacytoid dendritic cells resulting in aggravation of inflammation and disease. How suppression of NET formation can be targeted for treatment has not been reported yet. Signal Inhibitory Receptor on Leukocytes-1 (SIRL-1) is a surface molecule exclusively expressed on phagocytes. We recently identified SIRL-1 as a negative regulator of human neutrophil function. Here, we determine whether ligation of SIRL-1 prevents the pathogenic release of NETs in SLE. Peripheral blood neutrophils from SLE patients with mild to moderate disease activity and healthy donors were freshly isolated. NET release was assessed spontaneously or after exposure to anti-neutrophil antibodies or plasma obtained from SLE patients. The formation of NETs was determined by microscopic evaluation using DNA dyes and immunostaining of NET components, as well as by live cell imaging. We show that SLE neutrophils spontaneously release NETs. NET formation is enhanced by stimulation with antibodies against LL37. Inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and MEK-ERK signaling prevents NET release in response to these antibodies. Signaling via the inhibitory receptor SIRL-1 was induced by ligation with anti-SIRL-1 specific antibodies. Both spontaneous and anti-neutrophil antibody-induced NET formation is suppressed by engagement of SIRL-1. Furthermore, NET release by healthy neutrophils exposed to SLE plasma is inhibited by SIRL-1 ligation. Thus, SIRL-1 engagement can dampen spontaneous and anti-neutrophil antibody-induced NET formation in SLE, likely by suppressing NAPDH oxidase and MEK-ERK activity. Together, these findings reveal a regulatory role for SIRL-1 in NET formation, potentially providing a novel therapeutic target to break the pathogenic loop in SLE.


Subject(s)
Extracellular Traps/immunology , Lupus Erythematosus, Systemic/immunology , Neutrophils/immunology , Receptors, Immunologic/immunology , Adult , Antibodies/immunology , Antibody Formation/immunology , Female , Humans , Ligation/methods , MAP Kinase Signaling System/immunology , Male , Middle Aged , NADPH Oxidases/immunology , Phagocytes/immunology
12.
Eur J Immunol ; 43(5): 1297-308, 2013 May.
Article in English | MEDLINE | ID: mdl-23436183

ABSTRACT

ROS production is an important effector mechanism mediating intracellular killing of microbes by phagocytes. Inappropriate or untimely ROS production can lead to tissue damage, thus tight regulation is essential. We recently characterized signal inhibitory receptor on leukocytes-1 (SIRL-1) as an inhibitory receptor expressed by human phagocytes. Here, we demonstrate that ligation of SIRL-1 dampens Fc receptor-induced ROS production in primary human phagocytes. In accordance, SIRL-1 engagement on these cells impairs the microbicidal activity of neutrophils, without affecting phagocytosis. The inhibition of ROS production may result from reduced ERK activation, since co-ligation of Fc receptors and SIRL-1 on phagocytes inhibited phosphorylation of ERK. Importantly, we demonstrate that microbial and inflammatory stimuli cause rapid downregulation of SIRL-1 expression on the surface of primary neutrophils and monocytes. In accordance, SIRL-1 expression levels on neutrophils in bronchoalveolar lavage fluid from patients with neutrophilic airway inflammation are greatly reduced. We propose that SIRL-1 on phagocytes sets an activation threshold to prevent inappropriate production of oxygen radicals. Upon infection, SIRL-1 expression is downregulated, allowing microbial killing and clearance of the pathogen.


Subject(s)
Monocytes/metabolism , Neutrophils/metabolism , Phagocytes/metabolism , Reactive Oxygen Species/immunology , Receptors, Immunologic/immunology , Respiratory Burst/immunology , Bronchiolitis, Viral/immunology , Bronchiolitis, Viral/pathology , Bronchiolitis, Viral/virology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Case-Control Studies , Colony Count, Microbial , Gene Expression Regulation/immunology , Humans , Immunoconjugates/chemistry , Immunoconjugates/genetics , Immunoconjugates/immunology , Infant , Monocytes/immunology , Monocytes/microbiology , Neutrophils/immunology , Neutrophils/microbiology , Phagocytes/immunology , Phagocytes/microbiology , Reactive Oxygen Species/metabolism , Receptors, Fc/chemistry , Receptors, Fc/genetics , Receptors, Fc/immunology , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics , Respiratory Syncytial Viruses/immunology , Respiratory System/immunology , Signal Transduction , Staphylococcus epidermidis/growth & development , Staphylococcus epidermidis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...