Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Cell Rep ; 43(9): 114729, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39264809

ABSTRACT

Defining what constitutes a healthy microbiome throughout our lives remains an ongoing challenge. Understanding to what extent host and environmental factors can influence it has been the primary motivation for large population studies worldwide. Here, we describe the fecal microbiome of 3,746 individuals (0-87 years of age) in a nationwide study in the Netherlands, in association with extensive questionnaires. We validate previous findings, such as infant-adult trajectories, and explore the collective impact of our variables, which explain over 40% of the variation in microbiome composition. We identify associations with less explored factors, particularly those ethnic related, which show the largest impact on the adult microbiome composition, diversity, metabolic profiles, and CAZy (carbohydrate-active enzyme) repertoires. Understanding the sources of microbiome variability is crucial, given its potential as a modifiable target with therapeutic possibilities. With this work, we aim to serve as a foundational element for the design of health interventions and fundamental research.


Subject(s)
Feces , Netherlands , Humans , Feces/microbiology , Adult , Aged , Middle Aged , Adolescent , Child, Preschool , Aged, 80 and over , Child , Infant , Male , Female , Young Adult , Infant, Newborn , Longevity , Gastrointestinal Microbiome/genetics , Microbiota
2.
Front Immunol ; 15: 1447555, 2024.
Article in English | MEDLINE | ID: mdl-39257577

ABSTRACT

Introduction: Research has confirmed the safety and comparable seroconversion rates following SARS-CoV-2 vaccination in patients with solid cancers. However, the impact of cancer treatment on vaccine-induced T cell responses remains poorly understood. Methods: In this study, we expand on previous findings within the VOICE trial by evaluating the functional and phenotypic composition of mRNA-1273-induced T cell responses in patients with solid tumors undergoing immunotherapy, chemotherapy, or both, compared to individuals without cancer. We conducted an ELISpot analysis on 386 participants to assess spike-specific T cell responses 28 days after full vaccination. Further in-depth characterization of using flow cytometry was performed on a subset of 63 participants to analyze the functional phenotype and differentiation state of spike-specific T cell responses. Results: ELISpot analysis showed robust induction of spike-specific T cell responses across all treatment groups, with response rates ranging from 75% to 80%. Flow cytometry analysis revealed a distinctive cytokine production pattern across cohorts, with CD4 T cells producing IFNγ, TNF, and IL-2, and CD8 T cells producing IFNγ, TNF, and CCL4. Variations were observed in the proportion of monofunctional CD4 T cells producing TNF, particularly higher in individuals without cancer and patients treated with chemotherapy alone, while those treated with immunotherapy or chemoimmunotherapy predominantly produced IFNγ. Despite these differences, polyfunctional spike-specific memory CD4 and CD8 T cell responses were comparable across cohorts. Notably, immunotherapy-treated patients exhibited an expansion of spike-specific CD4 T cells with a terminally differentiated effector memory phenotype. Discussion: These findings demonstrate that systemic treatment in patients with solid tumors does not compromise the quality of polyfunctional mRNA-1273-induced T cell responses. This underscores the importance of COVID-19 vaccination in patients with solid cancers undergoing systemic treatment.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19 , Memory T Cells , Neoplasms , SARS-CoV-2 , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , CD8-Positive T-Lymphocytes/immunology , Male , Female , COVID-19/immunology , COVID-19/prevention & control , Middle Aged , CD4-Positive T-Lymphocytes/immunology , SARS-CoV-2/immunology , Aged , 2019-nCoV Vaccine mRNA-1273/immunology , Memory T Cells/immunology , Immunotherapy/methods , Adult , COVID-19 Vaccines/immunology , Vaccination , Spike Glycoprotein, Coronavirus/immunology , Immunologic Memory
3.
Vaccine ; 42(24): 126250, 2024 Oct 24.
Article in English | MEDLINE | ID: mdl-39226789

ABSTRACT

Lung transplant recipients (LTRs) are particularly at risk of developing severe coronavirus disease-2019 (COVID-19), but are also difficult to protect by vaccination due to their immunocompromised state. Here, we investigated the immunogenicity of mRNA-based COVID-19 vaccines in LTRs who had a prior natural SARS-CoV-2 infection. At a median of 184 days after SARS-CoV-2 infection, LTRs were vaccinated twice with the mRNA-1273 COVID-19 vaccine, with a 28-day interval. Blood samples were obtained pre-vaccination, 28 days after the first dose, and 28 days and 6 months after the second dose. Spike (S-) and nucleocapsid (N-) specific antibodies were measured, as well as neutralization of the ancestral and Omicron BA.5 variant. S-specific T cell responses were evaluated using IFN-γ ELISpot,IGRA, and activation markers by flow cytometry. Phenotyping of T cells was performed by using high-resolution spectral flow cytometry. Most LTRs with prior infection had detectable S-specific antibodies and T cells at baseline. After the first vaccination, S-specific antibody levels increased significantly; an additional increase was observed after the second vaccination. N-specific antibodies decreased during the study period, indicative of the fact that no further breakthrough infections occurred. An increase in IFN-γ producing T cells was observed after the first vaccination, but no additional boost could be detected after the second vaccination. Antibody levels and virus-specific T cell responses remained significantly higher compared to pre-vaccination levels at 6 months post-vaccination, indicating an additive and durable effect of vaccination after infection in LTRs. Neutralizing antibodies were detected against the ancestral strain and retained cross-reactivity with Omicron BA.5, albeit at lower levels. Moreover, the quantity and phenotype of SARS-CoV-2 spike-specific T cells were similar in LTRs compared to controls with hybrid immunity. In conclusion, mRNA-based COVID-19 vaccines are immunogenic in LTRs with prior immunity, and antibody and T cell responses are durable up to 6 months post-vaccination.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Lung Transplantation , SARS-CoV-2 , T-Lymphocytes , Transplant Recipients , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , T-Lymphocytes/immunology , SARS-CoV-2/immunology , Middle Aged , Male , Female , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , 2019-nCoV Vaccine mRNA-1273/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Spike Glycoprotein, Coronavirus/immunology , Aged , Vaccination , Immunogenicity, Vaccine
4.
Nat Commun ; 15(1): 6603, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39097574

ABSTRACT

Vaccine responsiveness is often reduced in older adults. Yet, our lack of understanding of low vaccine responsiveness hampers the development of effective vaccination strategies to reduce the impact of infectious diseases in the ageing population. Young-adult (25-49 y), middle-aged (50-64 y) and older-adult ( ≥ 65 y) participants of the VITAL clinical trials (n = 315, age-range: 28-98 y), were vaccinated with an annual (2019-2020) quadrivalent influenza (QIV) booster vaccine, followed by a primary 13-valent pneumococcal-conjugate (PCV13) vaccine (summer/autumn 2020) and a primary series of two SARS-CoV-2 mRNA-1273 vaccines (spring 2021). This unique setup allowed investigation of humoral responsiveness towards multiple vaccines within the same individuals over the adult age-range. Booster QIV vaccination induced comparable H3N2 hemagglutination inhibition (HI) titers in all age groups, whereas primary PCV13 and mRNA-1273 vaccination induced lower antibody concentrations in older as compared to younger adults (primary endpoint). The persistence of humoral responses, towards the 6 months timepoint, was shorter in older adults for all vaccines (secondary endpoint). Interestingly, highly variable vaccine responder profiles overarching multiple vaccines were observed. Yet, approximately 10% of participants, mainly comprising of older male adults, were classified as low responders to multiple vaccines. This study aids the identification of risk groups for low vaccine responsiveness and hence supports targeted vaccination strategies. Trial number: NL69701.041.19, EudraCT: 2019-000836-24.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , COVID-19 , Immunity, Humoral , Immunization, Secondary , Influenza Vaccines , Influenza, Human , Pneumococcal Vaccines , SARS-CoV-2 , Humans , Middle Aged , Adult , Aged , Male , Female , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , Immunity, Humoral/immunology , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Aged, 80 and over , 2019-nCoV Vaccine mRNA-1273/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , Age Factors , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Influenza A Virus, H3N2 Subtype/immunology , Vaccination , Hemagglutination Inhibition Tests
5.
Transplantation ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902860

ABSTRACT

BACKGROUND: Insight into cellular immune responses to COVID-19 vaccinations is crucial for optimizing booster programs in kidney transplant recipients (KTRs). METHODS: In an immunologic substudy of a multicenter randomized controlled trial (NCT05030974) investigating different repeated vaccination strategies in KTR who showed poor serological responses after 2 or 3 doses of an messenger RNA (mRNA)-based vaccine, we compared SARS-CoV-2-specific interleukin-21 memory T-cell and B-cell responses by enzyme-linked immunosorbent spot (ELISpot) assays and serum IgG antibody levels. Patients were randomized to receive: a single dose of mRNA-1273 (100 µg, n = 25), a double dose of mRNA-1273 (2 × 100 µg, n = 25), or a single dose of adenovirus type 26 encoding the SARS-CoV-2 spike glycoprotein (Ad26.COV2.S) (n = 25). In parallel, we also examined responses in 50 KTR receiving 100 µg mRNA-1273, randomized to continue (n = 25) or discontinue (n = 25) mycophenolate mofetil/mycophenolic acid. As a reference, the data were compared with KTR who received 2 primary mRNA-1273 vaccinations. RESULTS: Repeated vaccination increased the seroconversion rate from 21% to 66% in all patients, which was strongly associated with enhanced levels of SARS-CoV-2-specific interleukin-21 memory T cells (odd ratio, 3.84 [1.89-7.78]; P < 0.001) and B cells (odd ratio, 35.93 [6.94-186.04]; P < 0.001). There were no significant differences observed in these responses among various vaccination strategies. In contrast to KTR vaccinated with 2 primary vaccinations, the number of antigen-specific memory B cells demonstrated potential for classifying seroconversion after repeated vaccination (area under the curve, 0.64; 95% confidence interval, 0.37-0.90; P = 0.26 and area under the curve, 0.95; confidence interval, 0.87-0.97; P < 0.0001, respectively). CONCLUSIONS: Our study emphasizes the importance of virus-specific memory T- and B-cell responses for comprehensive understanding of COVID-19 vaccine efficacy among KTR.

6.
iScience ; 27(6): 109981, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38868191

ABSTRACT

Encounters with pathogens and other molecules can imprint long-lasting effects on our immune system, influencing future physiological outcomes. Given the wide range of microbes to which humans are exposed, their collective impact on health is not fully understood. To explore relations between exposures and biological aging and inflammation, we profiled an antibody-binding repertoire against 2,815 microbial, viral, and environmental peptides in a population cohort of 1,443 participants. Utilizing antibody-binding as a proxy for past exposures, we investigated their impact on biological aging, cell composition, and inflammation. Immune response against cytomegalovirus (CMV), rhinovirus, and gut bacteria relates with telomere length. Single-cell expression measurements identified an effect of CMV infection on the transcriptional landscape of subpopulations of CD8 and CD4 T-cells. This examination of the relationship between microbial exposures and biological aging and inflammation highlights a role for chronic infections (CMV and Epstein-Barr virus) and common pathogens (rhinoviruses and adenovirus C).

8.
Nat Commun ; 15(1): 4224, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762522

ABSTRACT

Waning antibody responses after COVID-19 vaccination combined with the emergence of the SARS-CoV-2 Omicron lineage led to reduced vaccine effectiveness. As a countermeasure, bivalent mRNA-based booster vaccines encoding the ancestral spike protein in combination with that of Omicron BA.1 or BA.5 were introduced. Since then, different BA.2-descendent lineages have become dominant, such as XBB.1.5, JN.1, or EG.5.1. Here, we report post-hoc analyses of data from the SWITCH-ON study, assessing how different COVID-19 priming regimens affect the immunogenicity of bivalent booster vaccinations and breakthrough infections (NCT05471440). BA.1 and BA.5 bivalent vaccines boosted neutralizing antibodies and T-cells up to 3 months after boost; however, cross-neutralization of XBB.1.5 was poor. Interestingly, different combinations of prime-boost regimens induced divergent responses: participants primed with Ad26.COV2.S developed lower binding antibody levels after bivalent boost while neutralization and T-cell responses were similar to mRNA-based primed participants. In contrast, the breadth of neutralization was higher in mRNA-primed and bivalent BA.5 boosted participants. Combined, our data further support the current use of monovalent vaccines based on circulating strains when vaccinating risk groups, as recently recommended by the WHO. We emphasize the importance of the continuous assessment of immune responses targeting circulating variants to guide future COVID-19 vaccination policies.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunogenicity, Vaccine , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Antibodies, Viral/blood , Female , Male , Adult , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , Vaccination
9.
Vaccines (Basel) ; 12(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38675801

ABSTRACT

To protect older adults against influenza A virus (IAV) infection, innovative strategies are imperative to overcome the decrease in protective immune response with age. One approach involves the boosting of CD8+ T cells at middle age that were previously induced by natural infection. At this stage, the immune system is still fit. Given the high conservation of T-cell epitopes within internal viral proteins, such a response may confer lasting protection against evolving influenza strains at older age, also reducing the high number of influenza immunizations currently required. However, at the time of vaccination, some individuals may have been more recently exposed to IAV than others, which could affect the T-cell response. We therefore investigated the fundamental principle of how the interval between the last infection and booster immunization during middle age influences the CD8+ T-cell response. To model this, female mice were infected at either 6 or 9 months of age and subsequently received a heterosubtypic infection booster at middle age (12 months). Before the booster infection, 6-month-primed mice displayed lower IAV-specific CD8+ T-cell responses in the spleen and lung than 9-month-primed mice. Both groups were better protected against the subsequent heterosubtypic booster infection compared to naïve mice. Notably, despite the different CD8+ T-cell levels between the 6-month- and 9-month-primed mice, we observed comparable responses after booster infection, based on IFNγ responses, and IAV-specific T-cell frequencies and repertoire diversity. Lung-derived CD8+ T cells of 6- and 9-month-primed mice expressed similar levels of tissue-resident memory-T-cell markers 30 days post booster infection. These data suggest that the IAV-specific CD8+ T-cell response after boosting is not influenced by the time post priming.

10.
NPJ Aging ; 10(1): 17, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438383

ABSTRACT

Ageing is associated with dysregulated immune responses, resulting in impaired resilience against infections and low-grade inflammation known as inflammageing. Frailty is a measurable condition in older adults characterized by decreased health and physical impairment. Dendritic cells (DCs) and monocytes play a crucial role in initiating and steering immune responses. To assess whether their frequencies and phenotypes in the blood are affected by ageing or frailty, we performed a flow cytometry study on monocyte and DC subsets in an immune ageing cohort. We included (n = 15 in each group) healthy young controls (HYC, median age 29 years), healthy older controls (HOC, 73 years) and Frail older controls (76 years). Monocyte subsets (classical, intermediate, non-classical) were identified by CD14 and CD16 expression, and DC subsets (conventional (c)DC1, cDC2, plasmacytoid (p)DC) by CD11c, CD1c, CD141 and CD303 expression. All subsets were checked for TLR2, TLR4, HLA-DR, CD86, PDL1, CCR7 and CD40 expression. We observed a lower proportion of pDCs in HOC compared to HYC. Additionally, we found higher expression of activation markers on classical and intermediate monocytes and on cDC2 in HOC compared to HYC. Frail participants had a higher expression of CD40 on classical and non-classical monocytes compared to the HOC group. We document a substantial effect of ageing on monocytes and DCs. Reduced pDCs in older people may underlie their impaired ability to counter viral infections, whereas enhanced expression of activation markers could indicate a state of inflammageing. Future studies could elucidate the functional consequences of CD40 upregulation with frailty.

11.
Sci Rep ; 14(1): 5090, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429462

ABSTRACT

The SARS-CoV-2 pandemic has emphasized the need to explore how variations in the immune system relate to the severity of the disease. This study aimed to explore inter-individual variation in response to SARS-CoV-2 infection by comparing T cell, B cell, and innate cell immune subsets among primary infected children and adults (i.e., those who had never experienced SARS-CoV-2 infection nor received vaccination previously), with varying disease severity after infection. We also examined immune subset kinetics in convalescent individuals compared to those with persistent infection to identify possible markers of immune dysfunction. Distinct immune subset differences were observed between infected adults and children, as well as among adult cases with mild, moderate, and severe disease. IgM memory B cells were absent in moderate and severe cases whereas frequencies of B cells with a lack of surface immunoglobulin expression were significantly higher in severe cases. Interestingly, these immune subsets remained stable during recovery implying that these subsets could be associated with underlying baseline immune variation. Our results offer insights into the potential immune markers associated with severe COVID-19 and provide a foundation for future research in this area.


Subject(s)
COVID-19 , Adult , Child , Humans , SARS-CoV-2 , B-Lymphocytes , Kinetics , Patient Acuity
12.
Arthritis Care Res (Hoboken) ; 76(1): 105-110, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37332051

ABSTRACT

OBJECTIVE: Vaccination remains essential in preventing morbidity of SARS-CoV-2 infections. We previously showed that >10 mg/day of prednisolone and methotrexate was associated with reduced antibody concentrations after primary vaccination in patients with giant cell arteritis (GCA) and polymyalgia rheumatica (PMR). This follow-up study was undertaken to measure the decay of antibody concentrations and the immunogenicity of SARS-CoV-2 booster vaccination. METHODS: Patients with GCA/PMR included in the primary vaccination (BNT162b2 [Pfizer-BioNTech] or ChAdOx1 [Oxford/AstraZeneca]) study were asked again to donate blood samples 6 months after primary vaccination (n = 24) and 1 month after booster vaccination (n = 46, BNT162b2 or mRNA1273). Data were compared to those of age-, sex-, and vaccine-matched controls (n = 58 and n = 42, respectively). Multiple linear regression was performed with post-booster antibody concentrations as dependent variable and post-primary vaccination antibodies, prednisolone >10mg/day, and methotrexate use as predicting variables. RESULTS: Antibody concentrations decreased faster over time in GCA/PMR patients than in controls, which was associated with prednisolone treatment during primary vaccination. Post-booster antibody concentrations were comparable between patients and controls. Antibody concentrations post primary vaccination, but not treatment during booster vaccination, were predictive for antibody concentrations post booster vaccination. CONCLUSION: These results indicate that the decay of humoral immunity after primary vaccination is associated with prednisolone treatment, whereas the subsequent increase after booster vaccination, was not. Patients with low antibody concentrations following primary vaccination remained at an immunogenic disadvantage after a single booster vaccination. This longitudinal study in GCA/PMR patients stresses the importance of repeated booster vaccination for patients with poor responses to primary vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Giant Cell Arteritis , Polymyalgia Rheumatica , Humans , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Follow-Up Studies , Giant Cell Arteritis/drug therapy , Giant Cell Arteritis/complications , Longitudinal Studies , Methotrexate/therapeutic use , Polymyalgia Rheumatica/complications , Prednisolone , SARS-CoV-2 , Vaccination
13.
Aging Cell ; 23(2): e14048, 2024 02.
Article in English | MEDLINE | ID: mdl-38146131

ABSTRACT

Effective vaccine-induced immune responses are particularly essential in older adults who face an increased risk of immunosenescence. However, the complexity and variability of the human immune system make predicting vaccine responsiveness challenging. To address this knowledge gap, our study aimed to characterize immune profiles that are predictive of vaccine responsiveness using "immunotypes" as an innovative approach. We analyzed an extensive set of innate and adaptive immune cell subsets in the whole blood of 307 individuals (aged 25-92) pre- and post-influenza vaccination which we associated with day 28 hemagglutination inhibition (HI) antibody titers. Building on our previous work that stratified individuals into nine immunotypes based on immune cell subsets, we identified two pre-vaccination immunotypes associated with weak and one showing robust day 28 antibody response. Notably, the weak responders demonstrated HLA-DR+ T-cell signatures, while the robust responders displayed a high naïve-to-memory T-cell ratio and percentage of nonclassical monocytes. These specific signatures deepen our understanding of the relationship between the baseline of the immune system and its functional potential. This approach could enhance our ability to identify individuals at risk of immunosenescence. Our findings highlight the potential of pre-vaccination immunotypes as an innovative tool for informing personalized vaccination strategies and improving health outcomes, particularly for aging populations.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Aged , Influenza, Human/prevention & control , T-Lymphocytes , Antibodies, Viral , Vaccination
14.
Viruses ; 15(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38005867

ABSTRACT

Kidney transplant recipients (KTR) show an impaired humoral immune response to COVID-19 vaccination due to their immunocompromised status. Torque teno virus (TTV) is a possible marker of immune function. This marker may be helpful in predicting the immune response after COVID-19 vaccination in order to decide which vaccination strategy should be applied. We therefore investigated whether TTV load is associated with the humoral response after COVID-19 vaccination. Of the KTR who participated in two prospective vaccination studies and received two to four doses of the mRNA-1273 COVID-19 vaccine, 122 were included. TTV load was measured prior to vaccination, and S1 IgG antibody levels were measured 28 days after vaccination. TTV load was independently inversely associated with S1 IgG antibodies after COVID-19 vaccination (B: -2.19 (95% CI: -3.6--0.8), p = 0.002). Interestingly, we found a significant interaction between TTV load and time after transplantation (p = 0.005). When patients were longer after transplantation, TTV load was less predictive for S1 IgG antibody response after vaccination compared to patients that were shorter after transplantation. Our data suggest that TTV load is a good marker in predicting COVID-19 vaccination antibody response and may be helpful in selecting a strategy shortly after transplantation. However, this marker should be handled with caution longer after transplantation.


Subject(s)
COVID-19 , Kidney Transplantation , Torque teno virus , Humans , SARS-CoV-2 , Prospective Studies , 2019-nCoV Vaccine mRNA-1273 , COVID-19 Vaccines , COVID-19/prevention & control , Transplant Recipients , Immunoglobulin G , Viral Load
15.
Immun Ageing ; 20(1): 68, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012652

ABSTRACT

Frailty describes an age-associated state in individuals with an increased vulnerability and less resilience against adverse outcomes. To score frailty, studies have employed the questionnaires, such as the SF-36 and EQ-5D-3L, or the Frailty Index, a composite score based on deficit accumulation. Furthermore, ageing of the immune system is often accompanied by a state of low-grade inflammation (inflammageing). Here, we aimed to associate 29 circulating markers of inflammageing with frailty measures in a prospective cohort study to understand the mechanisms underlying ageing.Frailty measures and inflammageing markers were assessed in 317 participants aged 25-90. We determined four different measures of frailty: the Frailty Index based on 31 deficits, the EQ-5D-3L and two physical domains of the SF-36. Serum/plasma levels of inflammageing markers and CMV/EBV seropositivity were measured using different techniques: Quanterix, Luminex or ELISA.All four measures of frailty strongly correlated with age and BMI. Nineteen biomarkers correlated with age, some in a linear fashion (IL-6, YKL-40), some only in the oldest age brackets (CRP), and some increased at younger ages and then plateaued (CCL2, sIL-6R). After correcting for age, biomarkers, such as IL-6, CRP, IL-1RA, YKL-40 and elastase, were associated with frailty. When corrected for BMI, the number of associations reduced further.In conclusion, inflammageing markers, particularly markers reflecting innate immune activation, are related to frailty. These findings indicate that health decline and the accumulation of deficits with age is accompanied with a low-grade inflammation which can be detected by specific inflammatory markers.

16.
NPJ Vaccines ; 8(1): 116, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37573454

ABSTRACT

CD8 + T cells are promising targets for vaccination against influenza A virus (IAV) infection. Their induction via peptide vaccination is not trivial, because peptides are weakly immunogenic. One strategy to overcome this is by vaccination with chemically enhanced altered peptide ligands (CPLs), which have improved MHC-binding and immunogenicity. It remains unknown how peptide-modification affects the resulting immune response. We studied the effect of CPLs derived from the influenza M158-66 epitope (GILGFVFTL) on the T-cell response. In HLA-A2*0201 transgenic mice, CPL-vaccination led to higher T-cell frequencies, but only a small percentage of the induced T cells recognized the GILG-wildtype (WT) peptide. CPL-vaccination resulted in a lower richness of the GILG-WT-specific T-cell repertoire and no improved protection against IAV-infection compared to GILG-WT peptide-vaccination. One CPL even appeared to enhance pathology after IAV-challenge. CPL-vaccination thus induces T cells not targeting the original peptide, which may lead to potential unwanted side effects.

17.
BMJ Open Respir Res ; 10(1)2023 08.
Article in English | MEDLINE | ID: mdl-37640510

ABSTRACT

OBJECTIVE: Current evidence on the effectiveness of SARS-CoV-2 prophylaxis is inconclusive. We aimed to systematically evaluate published studies on repurposed drugs for the prevention of laboratory-confirmed SARS-CoV-2 infection and/or COVID-19 among healthy adults. DESIGN: Systematic review. ELIGIBILITY: Quantitative experimental and observational intervention studies that evaluated the effectiveness of repurposed drugs for the primary prevention of SARS-CoV-2 infection and/or COVID-19 disease. DATA SOURCE: PubMed and Embase (1 January 2020-28 September 2022). RISK OF BIAS: Cochrane Risk of Bias 2.0 and Risk of Bias in Non-Randomised Studies of Interventions tools were applied to assess the quality of studies. DATA ANALYSIS: Meta-analyses for each eligible drug were performed if ≥2 similar study designs were available. RESULTS: In all, 65 (25 trials, 40 observational) and 29 publications were eligible for review and meta-analyses, respectively. Most studies pertained to hydroxychloroquine (32), ACE inhibitor (ACEi) or angiotensin receptor blocker (ARB) (11), statin (8), and ivermectin (8). In trials, hydroxychloroquine prophylaxis reduced laboratory-confirmed SARS-CoV-2 infection (risk ratio: 0.82 (95% CI 0.74 to 0.90), I2=48%), a result largely driven by one clinical trial (weight: 60.5%). Such beneficial effects were not observed in observational studies, nor for prognostic clinical outcomes. Ivermectin did not significantly reduce the risk of SARS-CoV-2 infection (RR: 0.35 (95% CI 0.10 to 1.26), I2=96%) and findings for clinical outcomes were inconsistent. Neither ACEi or ARB were beneficial in reducing SARS-CoV-2 infection. Most of the evidence from clinical trials was of moderate quality and of lower quality in observational studies. CONCLUSIONS: Results from our analysis are insufficient to support an evidence-based repurposed drug policy for SARS-CoV-2 prophylaxis because of inconsistency. In the view of scarce supportive evidence on repurposing drugs for COVID-19, alternative strategies such as immunisation of vulnerable people are warranted to prevent the future waves of infection. PROSPERO REGISTRATION NUMBER: CRD42021292797.


Subject(s)
COVID-19 , Adult , Humans , Pandemics/prevention & control , SARS-CoV-2 , Angiotensin Receptor Antagonists , Hydroxychloroquine/therapeutic use , Ivermectin , Angiotensin-Converting Enzyme Inhibitors , Primary Prevention
18.
Nat Rev Rheumatol ; 19(9): 560-575, 2023 09.
Article in English | MEDLINE | ID: mdl-37438402

ABSTRACT

Vaccines are important for protecting individuals at increased risk of severe infections, including patients undergoing DMARD therapy. However, DMARD therapy can also compromise the immune system, leading to impaired responses to vaccination. This Review focuses on the impact of DMARDs on influenza and SARS-CoV-2 vaccinations, as such vaccines have been investigated most thoroughly. Various data suggest that B cell depletion therapy, mycophenolate mofetil, cyclophosphamide, azathioprine and abatacept substantially reduce the immunogenicity of these vaccines. However, the effects of glucocorticoids, methotrexate, TNF inhibitors and JAK inhibitors on vaccine responses remain unclear and could depend on the dosage and type of vaccination. Vaccination is aimed at initiating robust humoral and cellular vaccine responses, which requires efficient interactions between antigen-presenting cells, T cells and B cells. DMARDs impair these cells in different ways and to different degrees, such as the prevention of antigen-presenting cell maturation, alteration of T cell differentiation and selective inhibition of B cell subsets, thus inhibiting processes that are necessary for an effective vaccine response. Innovative modified vaccination strategies are needed to improve vaccination responses in patients undergoing DMARD therapy and to protect these patients from the severe outcomes of infectious diseases.


Subject(s)
Antirheumatic Agents , COVID-19 , Vaccines , Humans , COVID-19/prevention & control , SARS-CoV-2 , Antirheumatic Agents/therapeutic use , Vaccines/therapeutic use , Azathioprine , Vaccination
19.
Front Immunol ; 14: 1210168, 2023.
Article in English | MEDLINE | ID: mdl-37520553

ABSTRACT

T cells recognize pathogens by their highly specific T-cell receptor (TCR), which can bind small fragments of an antigen presented on the Major Histocompatibility Complex (MHC). Antigens that are provided through vaccination cause specific T cells to respond by expanding and forming specific memory to combat a future infection. Quantification of this T-cell response could improve vaccine monitoring or identify individuals with a reduced ability to respond to a vaccination. In this proof-of-concept study we use longitudinal sequencing of the TCRß repertoire to quantify the response in the CD4+ memory T-cell pool upon pneumococcal conjugate vaccination. This comes with several challenges owing to the enormous size and diversity of the T-cell pool, the limited frequency of vaccine-specific TCRs in the total repertoire, and the variation in sample size and quality. We defined quantitative requirements to classify T-cell expansions and identified critical parameters that aid in reliable analysis of the data. In the context of pneumococcal conjugate vaccination, we were able to detect robust T-cell expansions in a minority of the donors, which suggests that the T-cell response against the conjugate in the pneumococcal vaccine is small and/or very broad. These results indicate that there is still a long way to go before TCR sequencing can be reliably used as a personal biomarker for vaccine-induced protection. Nevertheless, this study highlights the importance of having multiple samples containing sufficient T-cell numbers, which will support future studies that characterize T-cell responses using longitudinal TCR sequencing.


Subject(s)
Receptors, Antigen, T-Cell , Vaccination , Humans , Feasibility Studies , Receptors, Antigen, T-Cell/genetics , CD4-Positive T-Lymphocytes
20.
Am J Transplant ; 23(9): 1411-1424, 2023 09.
Article in English | MEDLINE | ID: mdl-37270109

ABSTRACT

T-cell-mediated help to B cells is required for the development of humoral responses, in which the cytokine interleukin (IL)-21 is key. Here, we studied the mRNA-1273 vaccine-induced SARS-CoV-2-specific memory T-cell IL-21 response, memory B cell response, and immunoglobulin (Ig)G antibody levels in peripheral blood at 28 days after the second vaccination by ELISpot and the fluorescent bead-based multiplex immunoassay, respectively. We included 40 patients with chronic kidney disease (CKD), 34 patients on dialysis, 63 kidney transplant recipients (KTR), and 47 controls. We found that KTR, but not patients with CKD and those receiving dialysis, showed a significantly lower number of SARS-CoV-2-specific IL-21 producing T cells than controls (P < .001). KTR and patients with CKD showed lower numbers of SARS-CoV-2-specific IgG-producing memory B cells when compared with controls (P < .001 and P = .01, respectively). The T-cell IL-21 response was positively associated with the SARS-CoV-2-specific B cell response and the SARS-CoV-2 spike S1-specific IgG antibody levels (both Pearson r = 0.5; P < .001). In addition, SARS-CoV-2-specific B cell responses were shown to be IL-21 dependent. Taken together, we show that IL-21 signaling is important in eliciting robust B cell-mediated immune responses in patients with kidney disease and KTR.


Subject(s)
COVID-19 , Kidney Diseases , Kidney Transplantation , Humans , COVID-19 Vaccines , 2019-nCoV Vaccine mRNA-1273 , SARS-CoV-2 , Interleukins , Immunoglobulin G , Antibodies, Viral , Immunity , Transplant Recipients
SELECTION OF CITATIONS
SEARCH DETAIL