Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(9): 4787-4795, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38305037

ABSTRACT

The shape of Au nanoparticles (NPs) plays a crucial role for applications in, amongst others, catalysis, electronic devices, biomedicine, and sensing. Typically, the deformation of the morphology of Au NPs is the most significant cause of loss of functionality. Here, we systematically investigate the thermal stability of Au nanotriangles (NTs) coated with (mesoporous) silica shells with different morphologies (core-shell (CS): Au NT@mSiO2/yolk-shell (YS): Au NT@mSiO2) and compare these to 'bare' nanoparticles (Au NTs), by a combination of in situ and/or ex situ TEM techniques and spectroscopy methods. Au NTs with a mesoporous silica (mSiO2) coating were found to show much higher thermal stability than those without a mSiO2 coating, as the mSiO2 shell restricts the (self-)diffusion of surface atoms. For the Au NT@mSiO2 CS and YS NPs, a thicker mSiO2 shell provides better protection than uncoated Au NTs. Surprisingly, the Au NT@mSiO2 YS NPs were found to be as stable as Au NT@mSiO2 CS NPs with a core-shell morphology. We hypothesize that the only explanation for this unexpected finding was the thicker and higher density SiO2 shell of YS NPs that prevents diffusion of Au surface atoms to more thermodynamically favorable positions.

2.
Chemistry ; 30(1): e202303877, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38088555

ABSTRACT

Invited for the cover of this issue is the group of Professor Bert Weckhuysen at Utrecht University. The image depicts the change in fluorescence color of a resorufin dye molecule when it is protonated and confined inside the micropores of zeolite-ß. Read the full text of the article at 10.1002/chem.202302553.

3.
Chemistry ; 30(1): e202302553, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37815001

ABSTRACT

We have used confocal laser scanning microscopy on the small, fluorescent resorufin dye molecule to visualize molecular accessibility and diffusion in the hierarchical, anisotropic pore structure of large (~10 µm-sized) zeolite-ß crystals. The resorufin dye is widely used in life and materials science, but only in its deprotonated form because the protonated molecule is barely fluorescent in aqueous solution. In this work, we show that protonated resorufin is in fact strongly fluorescent when confined within zeolite micropores, thus enabling fluorescence microimaging experiments. We find that J-aggregation guest-guest interactions lead to a decrease in the measured fluorescence intensity that can be prevented by using non-fluorescent spacer molecules. We characterized the pore space by introducing resorufin from the outside solution and following its diffusion into zeolite-ß crystals. The eventual homogeneous distribution of resorufin molecules throughout the zeolite indicates a fully accessible pore network. This enables the quantification of the diffusion coefficient in the straight pores of zeolite-ß without the need for complex analysis, and we found a value of 3×10-15  m2  s-1 . Furthermore, we saw that diffusion through the straight pores of zeolite-ß is impeded when crossing the boundaries between zeolite subunits.

4.
Nanoscale ; 15(41): 16601-16611, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37812063

ABSTRACT

The photoluminescence (PL) of lanthanide-doped nanocrystals can be quenched by energy transfer to vibrations of molecules located within a few nanometers from the dopants. Such short-range electronic-to-vibrational energy transfer (EVET) is often undesired as it reduces the photoluminescence efficiency. On the other hand, EVET may be exploited to extract information about molecular vibrations in the local environment of the nanocrystals. Here, we investigate the influence of solvent and gas environments on the PL properties of NaYF4:Er3+,Yb3+ upconversion nanocrystals. We relate changes in the PL spectrum and excited-state lifetimes in different solvents and their deuterated analogues to quenching of specific lanthanide levels by EVET to molecular vibrations. Similar but weaker changes are induced when we expose a film of nanocrystals to a gas environment with different amounts of H2O or D2O vapor. Quenching of green- and red-emitting levels of Er3+ can be explained in terms of EVET-mediated quenching that involves molecular vibrations with energies resonant with the gap between the energy levels of the lanthanide. Quenching of the near-infrared-emitting level is more complex and may involve EVET to combination-vibrations or defect-mediated quenching. EVET-mediated quenching holds promise as a mechanism to probe the local chemical environment-both for nanocrystals dispersed in a liquid and for nanocrystals exposed to gaseous molecules that adsorb onto the nanocrystal surface.

5.
J Phys Chem C Nanomater Interfaces ; 127(32): 16052-16060, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37609379

ABSTRACT

The surface plasmon resonance of noble-metal nanoparticles depends on nanoscale size, morphology, and composition, and provides great opportunities for applications in biomedicine, optoelectronics, (photo)catalysis, photovoltaics, and sensing. Here, we present the results of synthesizing ternary metallic or trimetallic nanoparticles, Au nanotriangles (Au NTs) with crystalline Ag-Pt alloyed shells, the morphology of which can be adjusted from a yolk-shell to a core-shell structure by changing the concentration of AgNO3 or the concentration of Au NT seeds, while the shell thickness can be precisely controlled by adjusting the concentration of K2PtCl4. By monitoring the growth process with UV-vis spectra and scanning transmission electron microscopy (STEM), the shells on the Au NT-Ag-Pt yolk-shell nanoparticles were found to grow via a galvanic replacement synergistic route. The plasmonic properties of the as-synthesized nanoparticles were investigated by optical absorbance measurements.

6.
Nano Lett ; 23(4): 1236-1243, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36745573

ABSTRACT

Atomic force microscopy (AFM) is a powerful technique for imaging molecules, macromolecular complexes, and nanoparticles with nanometer resolution. However, AFM images are distorted by the shape of the tip used. These distortions can be corrected if the tip shape can be determined by scanning a sample with features sharper than the tip and higher than the object of interest. Here we present a 3D DNA origami structure as fiducial for tip reconstruction and image correction. Our fiducial is stable under a broad range of conditions and has sharp steps at different heights that enable reliable tip reconstruction from as few as ten fiducials. The DNA origami is readily codeposited with biological and nonbiological samples, achieves higher precision for the tip apex than polycrystalline samples, and dramatically improves the accuracy of the lateral dimensions determined from the images. Our fiducial thus enables accurate and precise AFM imaging for a broad range of applications.


Subject(s)
DNA , Nanoparticles , Microscopy, Atomic Force/methods , DNA/chemistry
7.
Proc Natl Acad Sci U S A ; 120(9): e2213044120, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36827263

ABSTRACT

Sedimentation is a ubiquitous phenomenon across many fields of science, such as geology, astrophysics, and soft matter. Sometimes, sedimentation leads to unusual phenomena, such as the Brazil-nut effect, where heavier (granular) particles reside on top of lighter particles after shaking. We show experimentally that a Brazil-nut effect can be realized in a binary colloidal system of long-range repulsive charged particles driven purely by Brownian motion and electrostatics without the need for activity. Using theory, we argue that not only the mass-per-charge for the heavier particles needs to be smaller than the mass-per-charge for the lighter particles but also that at high overall density, the system can be trapped in a long-lived metastable state, which prevents the occurrence of the equilibrium Brazil-nut effect. Therefore, we envision that our work provides valuable insights into the physics of strongly interacting systems, such as partially glassy and crystalline structures. Finally, our theory, which quantitatively agrees with the experimental data, predicts that the shapes of sedimentation density profiles of multicomponent charged colloids are greatly altered when the particles are charge-regulating with more than one ion species involved. Hence, we hypothesize that sedimentation experiments can aid in revealing the type of ion adsorption processes that determine the particle charge and possibly the value of the corresponding equilibrium constants.

8.
J Colloid Interface Sci ; 635: 552-561, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36608391

ABSTRACT

Poly(N-isopropylacrylamide) (PNIPAM) microgels and PNIPAM colloidal shells attract continuous strong interest due to their thermoresponsive behavior, as their size and properties can be tuned by temperature. The direct single particle observation and characterization of pure, unlabeled PNIPAM microgels in their native aqueous environment relies on imaging techniques that operate either at interfaces or in cryogenic conditions, thus limiting the observation of their dynamic nature. Liquid Cell (Scanning) Transmission Electron Microscopy (LC-(S) TEM) imaging allows the characterization of materials and dynamic processes such as nanoparticle growth, etching, and diffusion, at nanometric resolution in liquids. Here we show that via a facile post-synthetic in situ polymer labelling step with high-contrast marker core-shell Au@SiO2 nanoparticles (NPs) it is possible to determine the full volume of PNIPAM microgels in water. The labelling allowed for the successful characterization of the thermoresponsive behavior of PNIPAM microgels and core shell silica@PNIPAM hybrid microgels, as well as the co-nonsolvency of PNIPAM in aqueous alcoholic solutions. The interplay between electron beam irradiation and PNIPAM systems in water resulted in irreversible shrinkage due to beam induced water radiolysis products, which in turn also affected the thermoresponsive behavior of PNIPAM. The addition of 2-propanol as radical scavenger improved PNIPAM stability in water under electron beam irradiation.

9.
Nat Commun ; 13(1): 7264, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36456560

ABSTRACT

Liquid crystal (LC) phases are in between solids and liquids with properties of both. Nematic LCs composed of rod-like molecules or particles exhibit long-range orientational order, yielding characteristic birefringence, but they lack positional order, allowing them to flow like a liquid. This combination of properties as well as their sensitivity to external fields make nematic LCs fundamental for optical applications e.g. liquid crystal displays (LCDs). When rod-like particles become bent, spontaneous bend deformations arise in the LC, leading to geometric frustration which can be resolved by complementary twist or splay deformations forming intriguing twist-bend (NTB) and splay-bend (NSB) nematic phases. Here, we show experimentally that the elusive NSB phases can be stabilized in systems of polydisperse micron-sized bent silica rods. Our results open avenues for the realization of NTB and NSB phases of colloidal and molecular LCs.

10.
Nat Commun ; 13(1): 6001, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36224188

ABSTRACT

Nanoplatelets offer many possibilities to construct advanced materials due to new properties associated with their (semi)two-dimensional shapes. However, precise control of both positional and orientational order of the nanoplatelets in three dimensions, which is required to achieve emerging and collective properties, is challenging to realize. Here, we combine experiments, advanced electron tomography and computer simulations to explore the structure of supraparticles self-assembled from nanoplatelets in slowly drying emulsion droplets. We demonstrate that the rich phase behaviour of nanoplatelets, and its sensitivity to subtle changes in shape and interaction potential can be used to guide the self-assembly into a wide range of different structures, offering precise control over both orientation and position order of the nanoplatelets. Our research is expected to shed light on the design of hierarchically structured metamaterials with distinct shape- and orientation- dependent properties.

11.
J Colloid Interface Sci ; 627: 761-773, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35878466

ABSTRACT

The unique properties of yolk-shell or rattle-type particles make them promising candidates for applications ranging from switchable photonic crystals, to catalysts, to sensors. To realize many of these applications it is important to gain control over the dynamics of the core particle independently of the shell. HYPOTHESIS: The core particle may be manipulated by an AC electric field with rich frequency-dependent behavior. EXPERIMENTS: Here, we explore the frequency-dependent dynamic electrophoretic mobility of a charged core particle within a charged, porous shell in AC electric fields both experimentally using liquid-phase electron microscopy and numerically via the finite-element method. These calculations solve the Poisson-Nernst-Planck-Stokes equations, where the core particle moves according to the hydrodynamic and electric forces acting on it. FINDINGS: In experiments the core exhibited three frequency-dependent regimes of field-driven motion: (i) parallel to the field, (ii) diffusive in a plane orthogonal to the field, and (iii) unbiased random motion. The transitions between the three observed regimes can be explained by the level of matching between the time required to establish ionic gradients in the shell and the period of the AC field. We further investigated the effect of shell porosity, ionic strength, and inner-shell radius. The former strongly impacted the core's behavior by attenuating the field inside the shell. Our results provide physical understanding on how the behavior of yolk-shell particles may be tuned, thereby enhancing their potential for use as building blocks for switchable photonic crystals.


Subject(s)
Hydrodynamics , Diffusion , Electrophoresis/methods , Motion , Porosity
12.
Nat Mater ; 21(5): 572-579, 2022 May.
Article in English | MEDLINE | ID: mdl-35087238

ABSTRACT

Metal-zeolite composites with metal (oxide) and acid sites are promising catalysts for integrating multiple reactions in tandem to produce a wide variety of wanted products without separating or purifying the intermediates. However, the conventional design of such materials often leads to uncontrolled and non-ideal spatial distributions of the metal inside/on the zeolites, limiting their catalytic performance. Here we demonstrate a simple strategy for synthesizing double-shelled, contiguous metal oxide@zeolite hollow spheres (denoted as MO@ZEO DSHSs) with controllable structural parameters and chemical compositions. This involves the self-assembly of zeolite nanocrystals onto the surface of metal ion-containing carbon spheres followed by calcination and zeolite growth steps. The step-by-step formation mechanism of the material is revealed using mainly in situ Raman spectroscopy and X-ray diffraction and ex situ electron microscopy. We demonstrate that it is due to this structure that an Fe2O3@H-ZSM-5 DSHSs-showcase catalyst exhibits superior performance compared with various conventionally structured Fe2O3-H-ZSM-5 catalysts in gasoline production by the Fischer-Tropsch synthesis. This work is expected to advance the rational synthesis and research of hierarchically hollow, core-shell, multifunctional catalyst materials.

14.
Adv Mater ; 33(33): e2100972, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34247423

ABSTRACT

Understanding light-matter interactions in nanomaterials is crucial for optoelectronic, photonic, and plasmonic applications. Specifically, metal nanoparticles (NPs) strongly interact with light and can undergo shape transformations, fragmentation and ablation upon (pulsed) laser excitation. Despite being vital for technological applications, experimental insight into the underlying atomistic processes is still lacking due to the complexity of such measurements. Herein, atomic resolution electron tomography is performed on the same mesoporous-silica-coated gold nanorod, before and after femtosecond laser irradiation, to assess the missing information. Combined with molecular dynamics (MD) simulations based on the experimentally determined 3D atomic-scale morphology, the complex atomistic rearrangements, causing shape deformations and defect generation, are unraveled. These rearrangements are simultaneously driven by surface diffusion, facet restructuring, and strain formation, and are influenced by subtleties in the atomic distribution at the surface.

15.
Commun Biol ; 4(1): 909, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34302049

ABSTRACT

Multiple samples are required to monitor and optimize the quality and reliability of quantitative measurements of stimulated emission depletion (STED) and confocal microscopes. Here, we present a single sample to calibrate these microscopes, align their laser beams and measure their point spread function (PSF) in 3D. The sample is composed of a refractive index matched colloidal crystal of silica beads with fluorescent and gold cores. The microscopes can be calibrated in three dimensions using the periodicity of the crystal; the alignment of the laser beams can be checked using the reflection of the gold cores; and the PSF can be measured at multiple positions and depths using the fluorescent cores. It is demonstrated how this sample can be used to visualize and improve the quality of STED and confocal microscopy images. The sample is adjustable to meet the requirements of different NA objectives and microscopy techniques and additionally can be used to evaluate refractive index mismatches as a function of depth quantitatively.


Subject(s)
Microscopy/standards , Quality Control , Calibration , Microscopy, Confocal/standards , Reproducibility of Results
16.
Nat Commun ; 12(1): 3980, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34172743

ABSTRACT

Assembling binary mixtures of nanoparticles into crystals, gives rise to collective properties depending on the crystal structure and the individual properties of both species. However, quantitative 3D real-space analysis of binary colloidal crystals with a thickness of more than 10 layers of particles has rarely been performed. Here we demonstrate that an excess of one species in the binary nanoparticle mixture suppresses the formation of icosahedral order in the self-assembly in droplets, allowing the study of bulk-like binary crystal structures with a spherical morphology also called supraparticles. As example of the approach, we show single-particle level analysis of over 50 layers of Laves phase binary crystals of hard-sphere-like nanoparticles using electron tomography. We observe a crystalline lattice composed of a random mixture of the Laves phases. The number ratio of the binary species in the crystal lattice matches that of a perfect Laves crystal. Our methodology can be applied to study the structure of a broad range of binary crystals, giving insights into the structure formation mechanisms and structure-property relations of nanomaterials.

17.
Nanoscale ; 13(24): 10925-10932, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34132311

ABSTRACT

Yolk-shell nanoparticles based on mesoporous SiO2 (mSiO2) coating of Au nanoparticles (Au NPs) hold great promise for many applications in e.g., catalysis, biomedicine, and sensing. Here, we present a single-step coating approach for synthesizing Au NP@mSiO2 yolk-shell particles with tunable size and tunable hollow space between yolk and shell. The Au NP-mSiO2 structure can be manipulated from core-shell to yolk-shell by varying the concentration of cetyltrimethylammonium chloride (CTAC), tetraethyl orthosilicate (TEOS), Au NPs, and NaOH. The growth mechanism of the yolk-shell particles was investigated in detail and consists of a concurrent process of growth, condensation, and internal etching through an outer shell. We also show by means of liquid-cell transmission electron microscopy (LC-TEM) that Au nanotriangle cores (Au NTs) in yolk-shell particles that are stuck on the mSiO2 shell, can be released by mild etching thereby making them mobile and tumbling in a liquid-filled volume. Due to the systematical investigation of the reaction parameters and understanding of the formation mechanism, the method can be scaled-up by at least an order of magnitude. This route can be generally used for the synthesis of yolk-shell structures with different Au nanoparticle shapes, e.g., nanoplatelets, nanorods, nanocubes, for yolk-shell structures with other metals at the core (Ag, Pd, and Pt), and additionally, using ligand exchange with other nanoparticles as cores and for synthesizing hollow mSiO2 spheres as well.

18.
ACS Nano ; 15(7): 11137-11149, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34132535

ABSTRACT

Yolk-shell or rattle-type particles consist of a core particle that is free to move inside a thin shell. A stable core with a fully accessible surface is of interest in fields such as catalysis and sensing. However, the stability of a charged nanoparticle core within the cavity of a charged thin shell remains largely unexplored. Liquid-cell (scanning) transmission electron microscopy is an ideal technique to probe the core-shell interactions at nanometer spatial resolution. Here, we show by means of calculations and experiments that these interactions are highly tunable. We found that in dilute solutions adding a monovalent salt led to stronger confinement of the core to the middle of the geometry. In deionized water, the Debye length κ-1 becomes comparable to the shell radius Rshell, leading to a less steep electric potential gradient and a reduced core-shell interaction, which can be detrimental to the stability of nanorattles. For a salt concentration range of 0.5-250 mM, the repulsion was relatively long-ranged due to the concave geometry of the shell. At salt concentrations of 100 and 250 mM, the core was found to move almost exclusively near the shell wall, which can be due to hydrodynamics, a secondary minimum in the interaction potential, or a combination of both. The possibility of imaging nanoparticles inside shells at high spatial resolution with liquid-cell electron microscopy makes rattle particles a powerful experimental model system to learn about nanoparticle interactions. Additionally, our results highlight the possibilities for manipulating the interactions between core and shell that could be used in future applications.

19.
Nat Mater ; 20(9): 1216-1220, 2021 09.
Article in English | MEDLINE | ID: mdl-33958769

ABSTRACT

Extending the toolbox from mono- to bimetallic catalysts is key in realizing efficient chemical processes1. Traditionally, the performance of bimetallic catalysts featuring one active and one selective metal is optimized by varying the metal composition1-3, often resulting in a compromise between the catalytic properties of the two metals4-6. Here we show that by designing the atomic distribution of bimetallic Au-Pd nanocatalysts, we obtain a synergistic catalytic performance in the industrially relevant selective hydrogenation of butadiene. Our single-crystalline Au-core Pd-shell nanorods were up to 50 times more active than their alloyed and monometallic counterparts, while retaining high selectivity. We find a shell-thickness-dependent catalytic activity, indicating that not only the nature of the surface but also several subsurface layers play a crucial role in the catalytic performance, and rationalize this finding using density functional theory calculations. Our results open up an alternative avenue for the structural design of bimetallic catalysts.

20.
ACS Omega ; 6(10): 7034-7046, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33748617

ABSTRACT

Bimetallic nanorods are important colloidal nanoparticles for optical applications, sensing, and light-enhanced catalysis due to their versatile plasmonic properties. However, tuning the plasmonic resonances is challenging as it requires a simultaneous control over the particle shape, shell thickness, and morphology. Here, we show that we have full control over these parameters by performing metal overgrowth on gold nanorods within a mesoporous silica shell, resulting in Au-Ag, Au-Pd, and Au-Pt core-shell nanorods with precisely tunable plasmonic properties. The metal shell thickness was regulated via the precursor concentration and reaction time in the metal overgrowth. Control over the shell morphology was achieved via a thermal annealing, enabling a transition from rough nonepitaxial to smooth epitaxial Pd shells while retaining the anisotropic rod shape. The core-shell synthesis was successfully scaled up from micro- to milligrams, by controlling the kinetics of the metal overgrowth via the pH. By carefully tuning the structure, we optimized the plasmonic properties of the bimetallic core-shell nanorods for surface-enhanced Raman spectroscopy. The Raman signal was the most strongly enhanced by the Au core-Ag shell nanorods, which we explain using finite-difference time-domain calculations.

SELECTION OF CITATIONS
SEARCH DETAIL