Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
1.
Toxicol Sci ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38603617

ABSTRACT

Administration of high dose vitamin K1 (VK1) overcomes coagulopathy and bleeding elicited by acute poisoning with long-acting anti-coagulant rodenticides (LAARs). However, long-term (months) treatment is required due to long LAAR biological half-lives that may lead to poor compliance and recurrent coagulopathy. The half-lives of LAARs are extended by slow metabolism, and similar to warfarin, are thought to undergo enterohepatic recirculation. We now show that treatment with the bile acid sequestrant cholestyramine (CSA) administered concomitantly with VK1 decreases plasma LAAR levels and increases LAAR fecal excretion. Daily CSA treatment for 14 days did not reduce plasma VK1 levels, nor increase prothrombin time. Collectively, these data show that CSA accelerates LAAR clearance from rabbits without adverse effects on VK1 anti-coagulation, and could provide an additional therapeutic option for treatment of LAAR poisoning.

2.
Food Chem Toxicol ; 186: 114537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417538

ABSTRACT

Increases in botanical use, encompassing herbal medicines and dietary supplements, have underlined a critical need for an advancement in safety assessment methodologies. However, botanicals present unique challenges for safety assessment due to their complex and variable composition arising from diverse growing conditions, processing methods, and plant varieties. Historically, botanicals have been largely evaluated based on their history of use information, based primarily on traditional use or dietary history. However, this presumption lacks comprehensive toxicological evaluation, demanding innovative and consistent assessment strategies. To address these challenges, the Botanical Safety Consortium (BSC) was formed as an international, cross-sector forum of experts to identify fit-for purpose assays that can be used to evaluate botanical safety. This global effort aims to assess botanical safety assessment methodologies, merging traditional knowledge with modern in vitro and in silico assays. The ultimate goal is to champion the development of toxicity tools for botanicals. This manuscript highlights: 1) BSC's strategy for botanical selection, sourcing, and preparation of extracts to be used in in vitro assays, and 2) the approach utilized to characterize botanical extracts, using green tea and Asian ginseng as examples, to build confidence for use in biological assays.


Subject(s)
Plants, Medicinal , Dietary Supplements , Tea
3.
Mass Spectrom Rev ; 43(1): 39-46, 2024.
Article in English | MEDLINE | ID: mdl-35929396

ABSTRACT

Small molecule therapeutic agents are needed to treat or prevent infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is the cause of the COVID-19 pandemic. To expedite the discovery of lead compounds for development, assays have been developed based on affinity selection-mass spectrometry (AS-MS), which enables the rapid screening of mixtures such as combinatorial libraries and extracts of botanicals or other sources of natural products. AS-MS assays have been used to find ligands to the SARS-CoV-2 spike protein for inhibition of cell entry as well as to the 3-chymotrypsin-like cysteine protease (3CLpro) and the RNA-dependent RNA polymerase complex constituent Nsp9, which are targets for inhibition of viral replication. The AS-MS approach of magnetic microbead affinity selection screening has been used to discover high-affinity peptide ligands to the spike protein as well as the hemp cannabinoids cannabidiolic acid and cannabigerolic acid, which can prevent cell infection by SARS-CoV-2. Another AS-MS method, native mass spectrometry, has been used to discover that the flavonoids baicalein, scutellarein, and ganhuangenin, can inhibit the SARS-CoV-2 protease 3CLpro. Native mass spectrometry has also been used to find an ent-kaurane natural product, oridonin, that can bind to the viral protein Nsp9 and interfere with RNA replication. These natural lead compounds are under investigation for the development of therapeutic agents to prevent or treat SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Mass Spectrometry
4.
Toxicol Sci ; 196(1): 16-24, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37535691

ABSTRACT

Glycyrrhiza uralensis Fisch. ex DC, one of the 3 pharmacopeial species of licorice and widely used in dietary supplements, can inhibit certain cytochrome P450 (CYP) enzymes. Thereby, G. uralensis preparations have the potential to cause pharmacokinetic drug interactions when consumed along with prescription medicines. One compound (1.34 mg dry weight) responsible for inhibiting CYP2B6, CYP2C8, and CYP2C9 was isolated using bioactivity-guided fractionation from 250 g dried roots, stolons, and rhizomes. The enzyme kinetics and mechanisms of inhibition were determined using human liver microsomes, recombinant enzymes, and UHPLC-MS/MS-based assays. Identified as licoisoflavone B, this compound displayed reversible inhibition of CYP2C8 with an IC50 value of 7.4 ± 1.1 µM and reversible inhibition of CYP2C9 with an IC50 value of 4.9 ± 0.4 µM. The enzyme kinetics indicated that the mechanism of inhibition was competitive for recombinant CYP2C8, with a Ki value of 7.0 ± 0.7 µM, and mixed-type inhibition for recombinant CYP2C9, with a Ki value of 1.2 ± 0.2 µM. Licoisoflavone B moderately inhibited CYP2B6 through a combination of irreversible and reversible mechanisms with an IC50 value of 16.0 ± 3.9 µM.


Subject(s)
Glycyrrhiza uralensis , Humans , Cytochrome P-450 CYP2C8 , Cytochrome P-450 CYP2B6 , Tandem Mass Spectrometry , Cytochrome P-450 CYP2C9 , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System , Microsomes, Liver
5.
Front Pharmacol ; 14: 1210579, 2023.
Article in English | MEDLINE | ID: mdl-37502215

ABSTRACT

The COVID-19 pandemic sparked the development of novel anti-viral drugs that have shown to be effective in reducing both fatality and hospitalization rates in patients with elevated risk for COVID-19 related morbidity or mortality. Currently, nirmatrelvir/ritonavir (Paxlovid™) fixed-dose combination is recommended by the World Health Organization for treatment of COVID-19. The ritonavir component is an inhibitor of cytochrome P450 (CYP) 3A, which is used in this combination to achieve needed therapeutic concentrations of nirmatrelvir. Because of the critical pharmacokinetic effect of this mechanism of action for Paxlovid™, co-administration with needed medications that inhibit or induce CYP3A is contraindicated, reflecting concern for interactions with the potential to alter the efficacy or safety of co-administered drugs that are also metabolized by CYP3A. Some herbal medicines are known to interact with drug metabolizing enzymes and transporters, including but not limited to inhibition or induction of CYP3A and P-glycoprotein. As access to these COVID-19 medications has increased in low- and middle-income countries (LMICs), understanding the potential for herb-drug interactions within these regions is important. Many studies have evaluated the utility of herbal medicines for COVID-19 treatments, yet information on potential herb-drug interactions involving Paxlovid™, specifically with herbal medicines commonly used in LMICs, is lacking. This review presents data on regionally-relevant herbal medicine use (particularly those promoted as treatments for COVID-19) and mechanism of action data on herbal medicines to highlight the potential for herbal medicine interaction Herb-drug interaction mediated by ritonavir-boosted antiviral protease inhibitors This work highlights potential areas for future experimental studies and data collection, identifies herbal medicines for inclusion in future listings of regionally diverse potential HDIs and underscores areas for LMIC-focused provider-patient communication. This overview is presented to support governments and health protection entities as they prepare for an increase of availability and use of Paxlovid™.

6.
Clin Sci (Lond) ; 137(8): 633-643, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37083031

ABSTRACT

Hemp is an understudied source of pharmacologically active compounds and many unique plant secondary metabolites including more than 100 cannabinoids. After years of legal restriction, research on hemp has recently demonstrated antiviral activities in silico, in vitro, and in vivo for cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), and several other cannabinoids against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), human immunodeficiency virus (HIV), and γ-herpes viruses. Mechanisms of action include inhibition of viral cell entry, inhibition of viral proteases, and stimulation of cellular innate immune responses. The anti-inflammatory properties of cannabinoids are also under investigation for mitigating the cytokine storm of COVID-19 and controlling chronic inflammation in people living with HIV. Retrospective clinical studies support antiviral activities of CBD, Δ9-THC, and cannabinoid mixtures as do some prospective clinical trials, but appropriately designed clinical trials of safety and efficacy of antiviral cannabinoids are urgently needed.


Subject(s)
COVID-19 , Cannabidiol , Cannabinoids , Cannabis , HIV Infections , Humans , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , HIV Infections/drug therapy
7.
Drug Metab Dispos ; 51(2): 199-204, 2023 02.
Article in English | MEDLINE | ID: mdl-36328482

ABSTRACT

Licorice, the roots and rhizomes of Glycyrrhiza glabra L., has been used as a medicinal herb, herbal adjuvant, and flavoring agent since ancient times. Recently, licorice extracts have become popular as dietary supplements used by females to alleviate menopausal symptoms. Exposure to licorice products containing high levels of glycyrrhizic acid can cause hypokalemia, but independent from this effect, preclinical data indicate that licorice can inhibit certain cytochrome P450 (P450) enzymes. To evaluate whether clinically relevant pharmacokinetic interactions of licorice with P450 enzymes exist, a phase 1 clinical investigation was carried out using a licorice extract depleted in glycyrrhizic acid (content <1%) and a cocktail containing caffeine, tolbutamide, alprazolam, and dextromethorphan, which are probe substrates for the enzymes CYP1A2, CYP2C9, CYP3A4/5, and CYP2D6, respectively. The botanically authenticated and chemically standardized extract of roots from G. glabra was consumed by 14 healthy menopausal and postmenopausal female participants twice daily for 2 weeks. The pharmacokinetics of each probe drug were evaluated immediately before and after supplementation with the licorice extract. Comparison of the average areas under the time-concentration curves (AUCs) for each probe substrate in serum showed no significant changes from licorice consumption, whereas time to reach peak concentration for caffeine and elimination half-life for tolbutamide showed small changes. According to the US Food and Drug Administration guidance, which is based on changes in the AUC of each probe substrate drug, the investigated licorice extract should not cause any clinically relevant pharmacokinetic interactions with respect to CYP3A4/5, CYP2C9, CYP2D6, or CYP1A2. SIGNIFICANCE STATEMENT: Despite generally-recognized-as-safe status, the licorice species Glycyrrhiza glabra has been associated with some toxicity. Preclinical studies suggest that G. glabra might cause pharmacokinetic drug interactions by inhibiting several cytochrome P450 enzymes. This phase 1 clinical study addressed these concerns by evaluating clinically relevant effects with respect to CYP3A4/5, CYP2C9, CYP2D6, and CYP1A2. These results showed that a standardized G. glabra extract did not cause any clinically relevant pharmacokinetic drug interactions with four major cytochrome P450 enzymes.


Subject(s)
Cytochrome P-450 CYP1A2 , Glycyrrhiza , Humans , Female , Cytochrome P-450 CYP2D6 , Caffeine/pharmacokinetics , Cytochrome P-450 CYP3A , Tolbutamide , Glycyrrhizic Acid , Cytochrome P-450 CYP2C9 , Cytochrome P-450 Enzyme System , Glycyrrhiza/chemistry , Dietary Supplements
8.
J Vasc Interv Radiol ; 33(10): 1213-1221.e5, 2022 10.
Article in English | MEDLINE | ID: mdl-35850455

ABSTRACT

PURPOSE: To investigate the pharmacokinetics (PK) and early effects of conventional transarterial chemoembolization (TACE) using sorafenib and doxorubicin on tumor necrosis, hypoxia markers, and angiogenesis in a rabbit VX2 liver tumor model. MATERIALS AND METHODS: VX2 tumor-laden New Zealand White rabbits (N = 16) were divided into 2 groups: 1 group was treated with hepatic arterial administration of ethiodized oil and doxorubicin emulsion (DOX-TACE), and the other group was treated with ethiodized oil, sorafenib, and doxorubicin emulsion (SORA-DOX-TACE). Animals were killed within 3 days of the procedure. Levels of sorafenib and doxorubicin were measured in blood, tumor, and adjacent liver using mass spectrometry. Tumor necrosis was determined by histopathological examination. Intratumoral hypoxia-inducible factor (HIF) 1α, vascular endothelial growth factor (VEGF), and microvessel density (MVD) were determined by immunohistochemistry. RESULTS: The median intratumoral concentration of sorafenib in the SORA-DOX-TACE group was 17.7 µg/mL (interquartile range [IQR], 7.42-33.5 µg/mL), and its maximal plasma concentration (Cmax) was 0.164 µg/mL (IQR, 0.0798-0.528 µg/mL). The intratumoral concentration and Cmax of doxorubicin were similar between the groups: 4.08 µg/mL (IQR, 3.18-4.79 µg/mL) and 0.677 µg/mL (IQR, 0.315-1.23 µg/mL), respectively, in the DOX-TACE group and 1.68 µg/mL (IQR, 0.795-4.08 µg/mL) and 0.298 µg/mL (IQR, 0.241-0.64 µg/mL), respectively, in the SORA-DOX-TACE group. HIF-1α expression was increased in the SORA-DOX-TACE group than in the DOX-TACE group. Tumor volume, tumor necrosis, VEGF expression, and MVD were similar between the 2 groups. CONCLUSIONS: The addition of sorafenib to DOX-TACE delivered to VX2 liver tumors resulted in high intratumoral and low systemic concentrations of sorafenib without altering the PK of doxorubicin.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/therapy , Chemoembolization, Therapeutic/methods , Doxorubicin , Emulsions , Ethiodized Oil , Hypoxia/therapy , Liver Neoplasms/therapy , Necrosis/therapy , Rabbits , Sorafenib , Vascular Endothelial Growth Factor A
9.
Front Mol Neurosci ; 15: 896314, 2022.
Article in English | MEDLINE | ID: mdl-35620447

ABSTRACT

Krabbe Disease (KD) is a lysosomal storage disorder characterized by the genetic deficiency of the lysosomal enzyme ß-galactosyl-ceramidase (GALC). Deficit or a reduction in the activity of the GALC enzyme has been correlated with the progressive accumulation of the sphingolipid metabolite psychosine, which leads to local disruption in lipid raft architecture, diffuse demyelination, astrogliosis, and globoid cell formation. The twitcher mouse, the most used animal model, has a nonsense mutation, which limits the study of how different mutations impact the processing and activity of GALC enzyme. To partially address this, we generated two new transgenic mouse models carrying point mutations frequently found in infantile and adult forms of KD. Using CRISPR-Cas9 gene editing, point mutations T513M (infantile) and G41S (adult) were introduced in the murine GALC gene and stable founders were generated. We show that GALC T513M/T513M mice are short lived, have the greatest decrease in GALC activity, have sharp increases of psychosine, and rapidly progress into a severe and lethal neurological phenotype. In contrast, GALC G41S/G41S mice have normal lifespan, modest decreases of GALC, and minimal psychosine accumulation, but develop adult mild inflammatory demyelination and slight declines in coordination, motor skills, and memory. These two novel transgenic lines offer the possibility to study the mechanisms by which two distinct GALC mutations affect the trafficking of mutated GALC and modify phenotypic manifestations in early- vs adult-onset KD.

11.
ASN Neuro ; 14: 17590914221087817, 2022.
Article in English | MEDLINE | ID: mdl-35300522

ABSTRACT

Psychosine exerts most of its toxic effects by altering membrane dynamics with increased shedding of extracellular vesicles (EVs). In this study, we discovered that a fraction of psychosine produced in the brain of the Twitcher mouse, a model for Krabbe disease, is associated with secreted EVs. We evaluated the effects of attenuating EV secretion in the Twitcher brain by depleting ceramide production with an inhibitor of neutral sphingomyelinase 2, GW4869. Twitcher mice treated with GW4869 had decreased overall EV levels, reduced EV-associated psychosine and unexpectedly, correlated with increased disease severity. Notably, characterization of well-established, neuroanatomic hallmarks of disease pathology, such as demyelination and inflammatory gliosis, remained essentially unaltered in the brains of GW4869-treated Twitcher mice compared to vehicle-treated Twitcher controls. Further analysis of Twitcher brain pathophysiology is required to understand the mechanism behind early-onset disease severity in GW4869-treated mice. The results herein demonstrate that some pathogenic lipids like psychosine may be secreted using EV pathways. Our results highlight the relevance of this secretory mechanism as a possible contributor to spreading pathogenic lipids in neurological lipidoses.


Subject(s)
Extracellular Vesicles , Leukodystrophy, Globoid Cell , Animals , Brain/metabolism , Disease Models, Animal , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Leukodystrophy, Globoid Cell/metabolism , Leukodystrophy, Globoid Cell/pathology , Mice , Psychosine/analysis , Psychosine/metabolism , Psychosine/pharmacology , Sphingolipids/metabolism
12.
J Nat Prod ; 85(1): 176-184, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35007072

ABSTRACT

As a complement to vaccines, small-molecule therapeutic agents are needed to treat or prevent infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants, which cause COVID-19. Affinity selection-mass spectrometry was used for the discovery of botanical ligands to the SARS-CoV-2 spike protein. Cannabinoid acids from hemp (Cannabis sativa) were found to be allosteric as well as orthosteric ligands with micromolar affinity for the spike protein. In follow-up virus neutralization assays, cannabigerolic acid and cannabidiolic acid prevented infection of human epithelial cells by a pseudovirus expressing the SARS-CoV-2 spike protein and prevented entry of live SARS-CoV-2 into cells. Importantly, cannabigerolic acid and cannabidiolic acid were equally effective against the SARS-CoV-2 alpha variant B.1.1.7 and the beta variant B.1.351. Orally bioavailable and with a long history of safe human use, these cannabinoids, isolated or in hemp extracts, have the potential to prevent as well as treat infection by SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Cannabinoids/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Benzoates/pharmacology , COVID-19/prevention & control , Cannabinoids/chemistry , Cannabinoids/metabolism , Chlorocebus aethiops , Humans , Ligands , Mass Spectrometry , Models, Molecular , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
13.
Drug Deliv Transl Res ; 12(5): 1105-1117, 2022 05.
Article in English | MEDLINE | ID: mdl-33861419

ABSTRACT

The purpose of this study was to compare intra-tumoral drug delivery, pharmacokinetics, and treatment response after doxorubicin (DOX) conventional (c-) versus drug-eluting embolic (DEE-) transarterial chemoembolization (TACE) in a rabbit VX2 liver tumor model. Twenty-four rabbits with solitary liver tumors underwent c-TACE (n = 12) (1:2 water-in-oil emulsion, 0.6 mL volume, 2 mg DOX) or DEE-TACE (n = 12) (130,000 70-150 µm 2 mg DOX-loaded microspheres). Systemic, intra-tumoral, and liver DOX levels were measured using mass spectrometry up to 7-day post-procedure. Intra-tumoral DOX distribution was quantified using fluorescence imaging. Percent tumor necrosis was quantified by a pathologist blinded to treatment group. Lobar TACE was successfully performed in all cases. Peak concentration (CMAX, µg/mL) for plasma, tumor tissue, and liver were 0.666, 4.232, and 0.270 for c-TACE versus 0.103, 8.988, and 0.610 for DEE-TACE. Area under the concentration versus time curve (AUC, µg/mL ∗ min) for plasma, tumor tissue, and liver were 18.3, 27,078.8, and 1339.1 for c-TACE versus 16.4, 26,204.8, and 1969.6 for DEE-TACE. A single dose of intra-tumoral DOX maintained cytotoxic levels through 7-day post-procedure for both TACE varieties, with a half-life of 1.8 (c-TACE) and 0.8 (DEE-TACE) days. Tumor-to-normal liver DOX ratio was high (c-TACE, 20.2; DEE-TACE, 13.3). c-TACE achieved significantly higher DOX coverage of tumor vs. DEE-TACE (10.8% vs. 2.3%; P = 0.003). Percent tumor necrosis was similar (39% vs. 37%; P = 0.806). In conclusion, in a rabbit VX2 liver tumor model, both c-TACE and DEE-TACE achieved tumoricidal intra-tumoral DOX levels and high tumor-to-normal liver drug ratios, though c-TACE resulted in significantly greater tumor coverage.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Animals , Chemoembolization, Therapeutic/methods , Doxorubicin , Liver Neoplasms/drug therapy , Necrosis/therapy , Rabbits , Treatment Outcome
14.
J Am Soc Mass Spectrom ; 33(1): 181-188, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34939787

ABSTRACT

Affinity selection-mass spectrometry, which includes magnetic microbead affinity selection-screening (MagMASS), is ideal for the discovery of ligands in complex mixtures that bind to pharmacological targets. Therapeutic agents are needed to prevent or treat COVID-19, which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infection of human cells by SARS-CoV-2 involves binding of the virus spike protein subunit 1 (S1) to the human cell receptor angiotensin converting enzyme-2 (ACE2). Like antibodies, small molecules have the potential to block the interaction of the viral S1 protein with human ACE2 and prevent SARS-CoV-2 infection. Therefore, a MagMASS assay was developed for the discovery of ligands to the S1 protein. Unlike previous MagMASS approaches, this new assay used robotics for 5-fold enhancement of throughput and sensitivity. The assay was validated using the SBP-1 peptide, which is identical to the ACE2 amino acid sequence recognized by the S1 protein, and then applied to the discovery of natural ligands from botanical extracts. Small molecule ligands to the S1 protein were discovered in extracts of the licorice species, Glycyrrhiza inflata. In particular, the licorice ligand licochalcone A was identified through dereplication and comparison with standards using HPLC with high-resolution tandem mass spectrometry.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Discovery/methods , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Binding Sites/drug effects , COVID-19/metabolism , Chalcones/chemistry , Chalcones/pharmacology , Drug Evaluation, Preclinical/methods , Fabaceae/chemistry , Humans , Ligands , Mass Spectrometry/methods , Molecular Docking Simulation , Protein Binding/drug effects , SARS-CoV-2/metabolism
15.
Drug Discov Today Technol ; 40: 59-63, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34916024

ABSTRACT

As a starting point for drug discovery, affinity selection-mass spectrometry (AS-MS) is ideal for the discovery of lead compounds from chemically diverse sources such as botanical, fungal and microbial extracts. Based on binding interactions between macromolecular receptors and ligands of low molecular mass, AS-MS enables the rapid isolation of pharmacologically active small molecules from complex mixtures for mass spectrometric characterization and identification. Unlike conventional high-throughput screening, AS-MS requires no radiolabels, no UV or fluorescent chromophores, and is compatible with all classes of receptors, enzymes, incubation buffers, cofactors, and ligands. The most successful types of AS-MS include pulsed ultrafiltration (PUF) AS-MS, size exclusion chromatography (SEC) AS-MS, and magnetic microbead affinity selection screening (MagMASS), which differ in their approaches for separating the ligand-receptor complexes from the non-binding compounds in mixtures. After affinity isolation, the ligand(s) from the mixture are characterized using high resolution UHPLC-MS and tandem mass spectrometry. Based on these elemental composition and structural data, the identities of the lead compounds are determined by searching on-line databases for known natural products and by comparison with standards. The structures of novel natural products are determined using a combination of spectroscopic techniques including two-dimensional NMR and MS.


Subject(s)
Biological Products , Drug Discovery , High-Throughput Screening Assays , Mass Spectrometry
16.
Planta ; 255(1): 4, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34841446

ABSTRACT

MAIN CONCLUSION: Metabolites in Rafflesia-infected and non-infected Tetrastigma were compared which may have applications in Rafflesia propagation. Benzylisoquinoline alkaloids, here reported for the first time in Vitaceae, were abundant in non-infected shoots and may be a form of defense. In Rafflesia-infected shoots, oxylipins, which mediate immune response, were elevated. Endemic to the forests of Southeast Asia, Rafflesia (Rafflesiaceae) is a genus of holoparasitic plants producing the largest flowers in the world, yet completely dependent on its host, the tropical grape vine, Tetrastigma. Rafflesia species are threatened with extinction, making them an iconic symbol of plant conservation. Thus far, propagation has proved challenging, greatly decreasing efficacy of conservation efforts. This study compared the metabolites in the shoots of Rafflesia-infected and non-infected Tetrastigma loheri to examine how Rafflesia infection affects host metabolomics and elucidate the Rafflesia infection process. Results from LC-MS-based untargeted metabolomics analysis showed benzylisoquinoline alkaloids were naturally more abundant in non-infected shoots and are here reported for the first time in the genus Tetrastigma, and in the grape family, Vitaceae. These metabolites have been implicated in plant defense mechanisms and may prevent a Rafflesia infection. In Rafflesia-infected shoots, oxygenated fatty acids, or oxylipins, and a flavonoid, previously shown involved in plant immune response, were significantly elevated. This study provides a preliminary assessment of metabolites that differ between Rafflesia-infected and non-infected Tetrastigma hosts and may have applications in Rafflesia propagation to meet conservation goals.


Subject(s)
Magnoliopsida , Parasites , Vitaceae , Animals , Flowers , Reproduction
17.
Toxicol Commun ; 5(1): 93-96, 2021.
Article in English | MEDLINE | ID: mdl-34458660

ABSTRACT

The importance of real-time, quantitative toxicology data available for physicians treating poisoned patients was illustrated during the 2018 outbreak in Illinois of severe coagulopathy caused by inhaling illicit synthetic cannabinoids products contaminated with commercially-available brodifacoum, difenacoum, and bromadiolone, three potent, long-acting anticoagulant rodenticides (LAARs). Identification and quantification of these life-threatening toxins in blood samples of hospitalized patients required toxicology testing with liquid chromatography-tandem mass spectrometry (LC-MS/MS) that was not available in clinical laboratories of hospitals at the time of the outbreak. This highly-sensitive, quantitative assay can provide critical information to guide patient care during and after hospitalization, including identification of offending LAARs, estimates of the ingested dose, and dosage and discontinuation of oral vitamin K1 therapy after hospital discharge once plasma LAARs concentrations decreased to a safe level (<10 ng/mL). Accordingly, we propose an action plan to enable treating physicians to quantify plasma concentrations of several LAARs simultaneously in poisoned patients. It involves rapid (<15 min), sensitive, and validated LC-MS/MS methods developed, tested and validated in our laboratory. This will allow treating physicians to request quantitative plasma LAARs testing, report test results in the patient's hospital discharge summary, and recommend regular monitoring of plasma LAARs concentrations in the outpatient setting.

18.
J Nutr ; 151(7): 1802-1816, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33877323

ABSTRACT

BACKGROUND: Curcuminoids from turmeric rhizome have significant health benefits but low bioavailability. OBJECTIVES: To assess the pharmacokinetics of a novel natural turmeric dried colloidal suspension compared with 4 other turmeric formulations (including a standardized extract) at their respective recommended dosages. METHODS: Thirty healthy men and women (18 to 45 y old) were enrolled in a randomized, open-labeled, crossover trial, and sequentially consumed single oral doses of standard turmeric extract (1500 mg), liquid micellar preparation (1000 mg), piperine-curcuminoid combination (1515 mg), phytosome formulation (1000 mg), or the dried colloidal suspension (300 mg). Eleven blood samples were obtained over 24 h, plasma was extracted with or without deconjugation with ß-glucuronidase or sulfatase, and ultra-high-pressure liquid chromatography/tandem MS was used to quantify the 3 parent curcuminoids and 12 metabolites. Classical pharmacokinetics parameters were derived. RESULTS: The total AUC values of unconjugated curcuminoids were highly variable within participants, with no significant differences between formulations. However, the AUC values for total curcuminoids (including all metabolites) showed significant product effects. Indeed, the micellar preparation delivered higher levels of total curcuminoids than any other formulation (8540 ng·h/mL), reaching significance when compared with the dried colloidal suspension and standard extract (6520 and 5080 ng·h/mL, respectively). After dose normalization, both micellar and dried colloidal formulations showed significantly higher AUC levels than the standard extract (respectively 136 and 72.9, compared with 3.7 ng·h/mL/mg). Total curcuminoid absorption levels were also significantly higher for the dried colloidal suspension when compared with either piperine or phytosome formulations. Interestingly, no significant differences were observed between the piperine-curcuminoid combination and the standard extract. No serious adverse events were reported. CONCLUSIONS: The administration of a low dose of the novel natural dried colloidal suspension provided high unconjugated and conjugated curcuminoid absorption, with significant beneficial differences when compared with the high dose of standard extract.This trial was registered at clinicaltrials.gov as NCT03621865.


Subject(s)
Curcuma , Curcumin , Biological Availability , Cross-Over Studies , Diarylheptanoids , Female , Humans , Male
19.
Toxicol Commun ; 5(1): 69-72, 2021.
Article in English | MEDLINE | ID: mdl-33768191

ABSTRACT

Standard of care follow-up therapy for patients poisoned by long-acting anticoagulant rodenticides (LAARs) is daily high-dose (up to 100 mg per day) oral vitamin K1 (VK1) for weeks to months to over a year. The availability of CLIA-certified quantitative testing for plasma LAAR concentrations can now assist health care providers in determining when to safely discontinue VK1 therapy. We present estimates of treatment duration required to reach safe concentrations (< =10ng/ml) using serial measurements of plasma brodifacoum (BDF, a potent LAAR) concentrations obtained from patients poisoned after inhaling synthetic cannabinoids containing BDF. We fit the data to zero-order (linear) and first-order (exponential) curves, the latter to account for enterohepatic circulation of BDF. The results show that estimates of therapy duration are significantly longer when exponential clearance is assumed. Accordingly, we recommend that plasma BDF concentrations be monitored simultaneously with international normalization ratio (INR) during follow-up of poisoned patients, and that concentrations be determined after VK1 therapy is discontinued to document persistence of safe concentrations.

20.
Mol Ther ; 29(5): 1883-1902, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33508430

ABSTRACT

Neonatal AAV9-gene therapy of the lysosomal enzyme galactosylceramidase (GALC) significantly ameliorates central and peripheral neuropathology, prolongs survival, and largely normalizes motor deficits in Twitcher mice. Despite these therapeutic milestones, new observations identified the presence of multiple small focal demyelinating areas in the brain after 6-8 months. These lesions are in stark contrast to the diffuse, global demyelination that affects the brain of naive Twitcher mice. Late-onset lesions exhibited lysosomal alterations with reduced expression of GALC and increased psychosine levels. Furthermore, we found that lesions were closely associated with the extravasation of plasma fibrinogen and activation of the fibrinogen-BMP-SMAD-GFAP gliotic response. Extravasation of fibrinogen correlated with tight junction disruptions of the vasculature within the lesioned areas. The lesions were surrounded by normal appearing white matter. Our study shows that the dysregulation of therapeutic GALC was likely driven by the exhaustion of therapeutic AAV episomal DNA within the lesions, paralleling the presence of proliferating oligodendrocyte progenitors and glia. We believe that this is the first demonstration of diminishing expression in vivo from an AAV gene therapy vector with detrimental effects in the brain of a lysosomal storage disease animal model. The development of this phenotype linking localized loss of GALC activity with relapsing neuropathology in the adult brain of neonatally AAV-gene therapy-treated Twitcher mice identifies and alerts to possible late-onset reductions of AAV efficacy, with implications to other genetic leukodystrophies.


Subject(s)
Galactosylceramidase/genetics , Genetic Therapy/methods , Leukodystrophy, Globoid Cell/pathology , White Matter/pathology , Animals , Animals, Newborn , Cells, Cultured , Dependovirus/genetics , Disease Models, Animal , Female , Fibrinogen/metabolism , Galactosylceramidase/metabolism , Genetic Vectors/administration & dosage , Leukodystrophy, Globoid Cell/blood , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/therapy , Male , Mice , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL
...