Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 204(4): 743-750, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521882

ABSTRACT

To accurately predict species' phenology under climate change, we need to gain a detailed mechanistic understanding of how different environmental cues interact to produce the seasonal timing response. In the winter moth (Operophtera brumata), seasonal timing of egg hatching is strongly affected by ambient temperature and has been under strong climate change-induced selection over the past 25 years. However, it is unclear whether photoperiod received at the egg stage also influences timing of egg hatching. Here, we investigated the relative contribution of photoperiod and temperature in regulating winter moth egg development using two split-brood experiments. We experimentally shifted the photoperiod eggs received by 2-4 weeks compared to the actual calendar date and measured the timing of egg hatching, both at a constant temperature and in combination with two naturally changing temperature treatments - mimicking a cold and a warm year. We found an eight-fold larger effect of temperature compared to photoperiod on egg development time. Moreover, the very small photoperiod effects we found were outweighed by both between- and within-clutch variation in egg development time. Thus, we conclude that photoperiod received at the egg stage does likely not play a substantial role in regulating the seasonal timing of egg hatching in the winter moth. These insights into the regulatory mechanism of seasonal timing could have important implications for predicting insect climate change adaptation, as we might expect different targets of selection depending on the relative contribution of different environmental cues.


Subject(s)
Moths , Photoperiod , Seasons , Temperature , Animals , Moths/physiology , Climate Change , Ovum
2.
Proc Biol Sci ; 290(2005): 20230414, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37608720

ABSTRACT

Climate change can severely impact species that depend on temporary resources by inducing phenological mismatches between consumer and resource seasonal timing. In the winter moth, warmer winters caused eggs to hatch before their food source, young oak leaves, became available. This phenological mismatch changed the selection on the temperature sensitivity of egg development rate. However, we know little about the fine-scale fitness consequences of phenological mismatch at the individual level and how this mismatch affects population dynamics in the winter moth. To determine the fitness consequences of mistimed egg hatching relative to timing of oak budburst, we quantified survival and pupation weight in a feeding experiment. We found that mismatch greatly increased mortality rates of freshly hatched caterpillars, as well as affecting caterpillar growth and development time. We then investigated whether these individual fitness consequences have population-level impacts by estimating the effect of phenological mismatch on population dynamics, using our long-term data (1994-2021) on relative winter moth population densities at four locations in The Netherlands. We found a significant effect of mismatch on population density with higher population growth rates in years with a smaller phenological mismatch. Our results indicate that climate change-induced phenological mismatch can incur severe individual fitness consequences that can impact population density in the wild.


Subject(s)
Moths , Population Growth , Animals , Seasons , Population Dynamics , Climate Change
3.
Mol Ecol ; 31(22): 5795-5812, 2022 11.
Article in English | MEDLINE | ID: mdl-36161402

ABSTRACT

Climate change will strongly affect the developmental timing of insects, as their development rate depends largely on ambient temperature. However, we know little about the genetic mechanisms underlying the temperature sensitivity of embryonic development in insects. We investigated embryonic development rate in the winter moth (Operophtera brumata), a species with egg dormancy which has been under selection due to climate change. We used RNA sequencing to investigate which genes are involved in the regulation of winter moth embryonic development rate in response to temperature. Over the course of development, we sampled eggs before and after an experimental change in ambient temperature, including two early development weeks when the temperature sensitivity of eggs is low and two late development weeks when temperature sensitivity is high. We found temperature-responsive genes that responded in a similar way across development, as well as genes with a temperature response specific to a particular development week. Moreover, we identified genes whose temperature effect size changed around the switch in temperature sensitivity of development rate. Interesting candidate genes for regulating the temperature sensitivity of egg development rate included genes involved in histone modification, hormonal signalling, nervous system development and circadian clock genes. The diverse sets of temperature-responsive genes we found here indicate that there are many potential targets of selection to change the temperature sensitivity of embryonic development rate. Identifying for which of these genes there is genetic variation in wild insect populations will give insight into their adaptive potential in the face of climate change.


Subject(s)
Circadian Clocks , Moths , Animals , Moths/genetics , Temperature , Seasons , Circadian Clocks/genetics , Insecta , Embryonic Development/genetics
4.
J Exp Biol ; 224(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34378047

ABSTRACT

Climate change is rapidly altering the environment and many species will need to genetically adapt their seasonal timing to keep up with these changes. Insect development rate is largely influenced by temperature, but we know little about the mechanisms underlying the temperature sensitivity of development. Here, we investigate seasonal timing of egg hatching in the winter moth, one of the few species which has been found to genetically adapt to climate change, likely through selection on temperature sensitivity of egg development rate. To study when during development winter moth embryos are most sensitive to changes in ambient temperature, we gave eggs an increase or decrease in temperature at different moments during their development. We measured their developmental progression and time of egg hatching, and used fluorescence microscopy to construct a timeline of embryonic development for the winter moth. We found that egg development rate responded more strongly to temperature once embryos were in the fully extended germband stage. This is the phylotypic stage at which all insect embryos have developed a rudimentary nervous system. Furthermore, at this stage, timing of ecdysone signaling determines developmental progression, which could act as an environment dependent gateway. Intriguingly, this may suggest that, from the phylotypic stage onward, insect embryos can start to integrate internal and environmental stimuli to actively regulate important developmental processes. As we found evidence that there is genetic variation for temperature sensitivity of egg development rate in our study population, such regulation could be a target of selection imposed by climate change.


Subject(s)
Moths , Adaptation, Physiological , Animals , Humans , Nervous System , Seasons , Temperature
5.
J Exp Zool A Ecol Integr Physiol ; 329(8-9): 506-510, 2018 10.
Article in English | MEDLINE | ID: mdl-29808964

ABSTRACT

Progressive illumination at night poses an increasing threat to species worldwide. Light at night is particularly problematic for bats as most species are nocturnal and often cross relatively large distances when commuting between roosts and foraging grounds. Earlier studies have shown that illumination of linear structures in the landscape disturbs commuting bats, and that the response of bats to light may strongly depend on the light spectrum. Here, we studied the impact of white, green, and red light on commuting Daubenton's bats (Myotis daubentonii). We used a unique location where commuting bats cross a road by flying through two identical, parallel culverts underneath. We illuminated the culverts with white, red, and green light, with an intensity of 5 lux at the water surface. Bats had to choose between the two culverts, each with a different lighting condition every night. We presented all paired combinations of white, green, and red light and dark control in a factorial design. Contrary to our expectations, the number of bat passes through a culvert was unaffected by the presence of light. Furthermore, bats did not show any preference for light color. These results show that the response of commuting Daubenton's bats to different colors of light at night with a realistic intensity may be limited when passing through culverts.


Subject(s)
Chiroptera/physiology , Color , Flight, Animal/radiation effects , Lighting/adverse effects , Animals , Choice Behavior/radiation effects , Environmental Exposure , Light/adverse effects , Netherlands
SELECTION OF CITATIONS
SEARCH DETAIL
...