Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Nat Ecol Evol ; 8(5): 960-971, 2024 May.
Article in English | MEDLINE | ID: mdl-38528191

ABSTRACT

Most emerging and re-emerging infectious diseases stem from viruses that naturally circulate in non-human vertebrates. When these viruses cross over into humans, they can cause disease outbreaks, epidemics and pandemics. While zoonotic host jumps have been extensively studied from an ecological perspective, little attention has gone into characterizing the evolutionary drivers and correlates underlying these events. To address this gap, we harnessed the entirety of publicly available viral genomic data, employing a comprehensive suite of network and phylogenetic analyses to investigate the evolutionary mechanisms underpinning recent viral host jumps. Surprisingly, we find that humans are as much a source as a sink for viral spillover events, insofar as we infer more viral host jumps from humans to other animals than from animals to humans. Moreover, we demonstrate heightened evolution in viral lineages that involve putative host jumps. We further observe that the extent of adaptation associated with a host jump is lower for viruses with broader host ranges. Finally, we show that the genomic targets of natural selection associated with host jumps vary across different viral families, with either structural or auxiliary genes being the prime targets of selection. Collectively, our results illuminate some of the evolutionary drivers underlying viral host jumps that may contribute to mitigating viral threats across species boundaries.


Subject(s)
Phylogeny , Humans , Animals , Genome, Viral , Evolution, Molecular , Viruses/genetics , Viruses/classification , Biological Evolution , Host Specificity , Selection, Genetic
2.
Genome Med ; 16(1): 34, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374151

ABSTRACT

BACKGROUND: Drug resistance in tuberculosis (TB) poses a major ongoing challenge to public health. The recent inclusion of bedaquiline into TB drug regimens has improved treatment outcomes, but this advance is threatened by the emergence of strains of Mycobacterium tuberculosis (Mtb) resistant to bedaquiline. Clinical bedaquiline resistance is most frequently conferred by off-target resistance-associated variants (RAVs) in the mmpR5 gene (Rv0678), the regulator of an efflux pump, which can also confer cross-resistance to clofazimine, another TB drug. METHODS: We compiled a dataset of 3682 Mtb genomes, including 180 carrying variants in mmpR5, and its immediate background (i.e. mmpR5 promoter and adjacent mmpL5 gene), that have been associated to borderline (henceforth intermediate) or confirmed resistance to bedaquiline. We characterised the occurrence of all nonsynonymous mutations in mmpR5 in this dataset and estimated, using time-resolved phylogenetic methods, the age of their emergence. RESULTS: We identified eight cases where RAVs were present in the genomes of strains collected prior to the use of bedaquiline in TB treatment regimes. Phylogenetic reconstruction points to multiple emergence events and circulation of RAVs in mmpR5, some estimated to predate the introduction of bedaquiline. However, epistatic interactions can complicate bedaquiline drug-susceptibility prediction from genetic sequence data. Indeed, in one clade, Ile67fs (a RAV when considered in isolation) was estimated to have emerged prior to the antibiotic era, together with a resistance reverting mmpL5 mutation. CONCLUSIONS: The presence of a pre-existing reservoir of Mtb strains carrying bedaquiline RAVs prior to its clinical use augments the need for rapid drug susceptibility testing and individualised regimen selection to safeguard the use of bedaquiline in TB care and control.


Subject(s)
Diarylquinolines , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Clofazimine , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Microbial Sensitivity Tests , Phylogeny , Tuberculosis/drug therapy
3.
Nat Commun ; 15(1): 67, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167298

ABSTRACT

The acquisition of exogenous mobile genetic material imposes an adaptive burden on bacteria, whereas the adaptational evolution of virulence plasmids upon entry into carbapenem-resistant Klebsiella pneumoniae (CRKP) and its impact remains unclear. To better understand the virulence in CRKP, we characterize virulence plasmids utilizing a large genomic data containing 1219 K. pneumoniae from our long-term surveillance and publicly accessible databases. Phylogenetic evaluation unveils associations between distinct virulence plasmids and serotypes. The sub-lineage ST11-KL64 CRKP acquires a pK2044-like virulence plasmid from ST23-KL1 hypervirulent K. pneumoniae, with a 2698 bp region deletion in all ST11-KL64. The deletion is observed to regulate methionine metabolism, enhance antioxidant capacity, and further improve survival of hypervirulent CRKP in macrophages. The pK2044-like virulence plasmid discards certain sequences to enhance survival of ST11-KL64, thereby conferring an evolutionary advantage. This work contributes to multifaceted understanding of virulence and provides insight into potential causes behind low fitness costs observed in bacteria.


Subject(s)
Antioxidants , Carbapenem-Resistant Enterobacteriaceae , Klebsiella pneumoniae/genetics , Phylogeny , Acclimatization , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology
4.
Nat Commun ; 14(1): 3322, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369644

ABSTRACT

There has been limited characterisation of bat-borne coronaviruses in Europe. Here, we screened for coronaviruses in 48 faecal samples from 16 of the 17 bat species breeding in the UK, collected through a bat rehabilitation and conservationist network. We recovered nine complete genomes, including two novel coronavirus species, across six bat species: four alphacoronaviruses, a MERS-related betacoronavirus, and four closely related sarbecoviruses. We demonstrate that at least one of these sarbecoviruses can bind and use the human ACE2 receptor for infecting human cells, albeit suboptimally. Additionally, the spike proteins of these sarbecoviruses possess an R-A-K-Q motif, which lies only one nucleotide mutation away from a furin cleavage site (FCS) that enhances infectivity in other coronaviruses, including SARS-CoV-2. However, mutating this motif to an FCS does not enable spike cleavage. Overall, while UK sarbecoviruses would require further molecular adaptations to infect humans, their zoonotic risk warrants closer surveillance.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , COVID-19/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Genomics , United Kingdom , Phylogeny , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
7.
Genome Biol Evol ; 15(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37220645

ABSTRACT

Comparing the evolution of distantly related viruses can provide insights into common adaptive processes related to shared ecological niches. Phylogenetic approaches, coupled with other molecular evolution tools, can help identify mutations informative on adaptation, although the structural contextualization of these to functional sites of proteins may help gain insight into their biological properties. Two zoonotic betacoronaviruses capable of sustained human-to-human transmission have caused pandemics in recent times (SARS-CoV-1 and SARS-CoV-2), although a third virus (MERS-CoV) is responsible for sporadic outbreaks linked to animal infections. Moreover, two other betacoronaviruses have circulated endemically in humans for decades (HKU1 and OC43). To search for evidence of adaptive convergence between established and emerging betacoronaviruses capable of sustained human-to-human transmission (HKU1, OC43, SARS-CoV-1, and SARS-CoV-2), we developed a methodological pipeline to classify shared nonsynonymous mutations as putatively denoting homoplasy (repeated mutations that do not share direct common ancestry) or stepwise evolution (sequential mutations leading towards a novel genotype). In parallel, we look for evidence of positive selection and draw upon protein structure data to identify potential biological implications. We find 30 candidate mutations, from which 4 (codon sites 18121 [nsp14/residue 28], 21623 [spike/21], 21635 [spike/25], and 23948 [spike/796]; SARS-CoV-2 genome numbering) further display evolution under positive selection and proximity to functional protein regions. Our findings shed light on potential mechanisms underlying betacoronavirus adaptation to the human host and pinpoint common mutational pathways that may occur during establishment of human endemicity.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Phylogeny , Middle East Respiratory Syndrome Coronavirus/genetics , Mutation
8.
Heredity (Edinb) ; 130(3): 154-162, 2023 03.
Article in English | MEDLINE | ID: mdl-36725960

ABSTRACT

Chickens are believed to have inhabited the Hawaiian island of Kauai since the first human migrations around 1200AD, but numbers have peaked since the tropical storms Iniki and Iwa in the 1980s and 1990s that destroyed almost all the chicken coops on the island and released large numbers of domestic chickens into the wild. Previous studies have shown these now feral chickens are an admixed population between Red Junglefowl (RJF) and domestic chickens. Here, using genetic haplotypic data, we estimate the time of the admixture event between the feral population on the island and the RJF to 1981 (1976-1995), coinciding with the timings of storm Iwa and Iniki. Analysis of genetic structure reveals a greater similarity between individuals inhabiting the northern and western part of the island to RJF than individuals from the eastern part of the island. These results point to the possibility of introgression events between feral chickens and the wild chickens in areas surrounding the Koke'e State Park and the Alaka'i plateau, posited as two of the major RJF reservoirs in the island. Furthermore, we have inferred haplotype blocks from pooled data to determine the most plausible source of the feral population. We identify a clear contribution from RJF and layer chickens of the White Leghorn (WL) breed. This work provides independent confirmation of the traditional hypothesis surrounding the origin of the feral populations and draws attention to the possibility of introgression of domestic alleles into the wild reservoir.


Subject(s)
Chickens , Hybridization, Genetic , Animals , Humans , Chickens/genetics , Hawaii , Islands , Breeding
9.
bioRxiv ; 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-34075377

ABSTRACT

Comparing the evolution of distantly related viruses can provide insights into common adaptive processes related to shared ecological niches. Phylogenetic approaches, coupled with other molecular evolution tools, can help identify mutations informative on adaptation, whilst the structural contextualization of these to functional sites of proteins may help gain insight into their biological properties. Two zoonotic betacoronaviruses capable of sustained human-to-human transmission have caused pandemics in recent times (SARS-CoV-1 and SARS-CoV-2), whilst a third virus (MERS-CoV) is responsible for sporadic outbreaks linked to animal infections. Moreover, two other betacoronaviruses have circulated endemically in humans for decades (HKU1 and OC43). To search for evidence of adaptive convergence between established and emerging betacoronaviruses capable of sustained human-to-human transmission (HKU1, OC43, SARS-CoV-1 and SARS-CoV-2), we developed a methodological pipeline to classify shared non-synonymous mutations as putatively denoting homoplasy (repeated mutations that do not share direct common ancestry) or stepwise evolution (sequential mutations leading towards a novel genotype). In parallel, we look for evidence of positive selection, and draw upon protein structure data to identify potential biological implications. We find 30 mutations, with four of these [codon sites 18121 (nsp14/residue 28), 21623 (spike/21), 21635 (spike/25) and 23948 (spike/796); SARS-CoV-2 genome numbering] displaying evolution under positive selection and proximity to functional protein regions. Our findings shed light on potential mechanisms underlying betacoronavirus adaptation to the human host and pinpoint common mutational pathways that may occur during establishment of human endemicity.

10.
Curr Biol ; 32(21): 4743-4751.e6, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36182700

ABSTRACT

Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%-40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th-19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.


Subject(s)
Plague , Humans , Plague/epidemiology , Plague/genetics , Pandemics/history , Metagenomics , Genome, Bacterial , Phylogeny
11.
Oxf Open Immunol ; 3(1): iqac003, 2022.
Article in English | MEDLINE | ID: mdl-35872966

ABSTRACT

SARS-CoV-2, the agent of the COVID-19 pandemic, emerged in late 2019 in China, and rapidly spread throughout the world to reach all continents. As the virus expanded in its novel human host, viral lineages diversified through the accumulation of around two mutations a month on average. Different viral lineages have replaced each other since the start of the pandemic, with the most successful Alpha, Delta and Omicron variants of concern (VoCs) sequentially sweeping through the world to reach high global prevalence. Neither Alpha nor Delta was characterized by strong immune escape, with their success coming mainly from their higher transmissibility. Omicron is far more prone to immune evasion and spread primarily due to its increased ability to (re-)infect hosts with prior immunity. As host immunity reaches high levels globally through vaccination and prior infection, the epidemic is expected to transition from a pandemic regime to an endemic one where seasonality and waning host immunization are anticipated to become the primary forces shaping future SARS-CoV-2 lineage dynamics. In this review, we consider a body of evidence on the origins, host tropism, epidemiology, genomic and immunogenetic evolution of SARS-CoV-2 including an assessment of other coronaviruses infecting humans. Considering what is known so far, we conclude by delineating scenarios for the future dynamic of SARS-CoV-2, ranging from the good-circulation of a fifth endemic 'common cold' coronavirus of potentially low virulence, the bad-a situation roughly comparable with seasonal flu, and the ugly-extensive diversification into serotypes with long-term high-level endemicity.

12.
Sci Adv ; 8(30): eabo4435, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35895820

ABSTRACT

Human herpes simplex virus 1 (HSV-1), a life-long infection spread by oral contact, infects a majority of adults globally. Phylogeographic clustering of sampled diversity into European, pan-Eurasian, and African groups has suggested the virus codiverged with human migrations out of Africa, although a much younger origin has also been proposed. We present three full ancient European HSV-1 genomes and one partial genome, dating from the 3rd to 17th century CE, sequenced to up to 9.5× with paired human genomes up to 10.16×. Considering a dataset of modern and ancient genomes, we apply phylogenetic methods to estimate the age of sampled modern Eurasian HSV-1 diversity to 4.68 (3.87 to 5.65) ka. Extrapolation of estimated rates to a global dataset points to the age of extant sampled HSV-1 as 5.29 (4.60 to 6.12) ka, suggesting HSV-1 lineage replacement coinciding with the late Neolithic period and following Bronze Age migrations.

13.
Nat Commun ; 13(1): 2988, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35624123

ABSTRACT

SARS-CoV-2, the causative agent of the COVID-19 pandemic, can infect a wide range of mammals. Since its spread in humans, secondary host jumps of SARS-CoV-2 from humans to multiple domestic and wild populations of mammals have been documented. Understanding the extent of adaptation to these animal hosts is critical for assessing the threat that the spillback of animal-adapted SARS-CoV-2 into humans poses. We compare the genomic landscapes of SARS-CoV-2 isolated from animal species to that in humans, profiling the mutational biases indicative of potentially different selective pressures in animals. We focus on viral genomes isolated from mink (Neovison vison) and white-tailed deer (Odocoileus virginianus) for which multiple independent outbreaks driven by onward animal-to-animal transmission have been reported. We identify five candidate mutations for animal-specific adaptation in mink (NSP9_G37E, Spike_F486L, Spike_N501T, Spike_Y453F, ORF3a_L219V), and one in deer (NSP3a_L1035F), though they appear to confer a minimal advantage for human-to-human transmission. No considerable changes to the mutation rate or evolutionary trajectory of SARS-CoV-2 has resulted from circulation in mink and deer thus far. Our findings suggest that minimal adaptation was required for onward transmission in mink and deer following human-to-animal spillover, highlighting the 'generalist' nature of SARS-CoV-2 as a mammalian pathogen.


Subject(s)
COVID-19 , Deer , Animals , COVID-19/genetics , Host Adaptation , Humans , Pandemics , SARS-CoV-2/genetics
14.
Nat Commun ; 13(1): 1131, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241674

ABSTRACT

The mobile resistance gene blaNDM encodes the NDM enzyme which hydrolyses carbapenems, a class of antibiotics used to treat some of the most severe bacterial infections. The blaNDM gene is globally distributed across a variety of Gram-negative bacteria on multiple plasmids, typically located within highly recombining and transposon-rich genomic regions, which leads to the dynamics underlying the global dissemination of blaNDM to remain poorly resolved. Here, we compile a dataset of over 6000 bacterial genomes harbouring the blaNDM gene, including 104 newly generated PacBio hybrid assemblies from clinical and livestock-associated isolates across China. We develop a computational approach to track structural variants surrounding blaNDM, which allows us to identify prevalent genomic contexts, mobile genetic elements, and likely events in the gene's global spread. We estimate that blaNDM emerged on a Tn125 transposon before 1985, but only reached global prevalence around a decade after its first recorded observation in 2005. The Tn125 transposon seems to have played an important role in early plasmid-mediated jumps of blaNDM, but was overtaken in recent years by other elements including IS26-flanked pseudo-composite transposons and Tn3000. We found a strong association between blaNDM-carrying plasmid backbones and the sampling location of isolates. This observation suggests that the global dissemination of the blaNDM gene was primarily driven by successive between-plasmid transposon jumps, with far more restricted subsequent plasmid exchange, possibly due to adaptation of plasmids to their specific bacterial hosts.


Subject(s)
Carbapenems , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Interspersed Repetitive Sequences/genetics , Microbial Sensitivity Tests , Plasmids/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism
16.
Nature ; 601(7891): 110-117, 2022 01.
Article in English | MEDLINE | ID: mdl-34758478

ABSTRACT

Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , COVID-19/virology , DNA-Directed RNA Polymerases/immunology , Memory T Cells/immunology , SARS-CoV-2/immunology , Seroconversion , Cell Proliferation , Cohort Studies , DNA-Directed RNA Polymerases/metabolism , Evolution, Molecular , Female , Health Personnel , Humans , Male , Membrane Proteins/immunology , Memory T Cells/cytology , Multienzyme Complexes/immunology , SARS-CoV-2/enzymology , SARS-CoV-2/growth & development , Transcription, Genetic/immunology
17.
Biology (Basel) ; 10(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34943238

ABSTRACT

The Asian Central Steppe, consisting of current-day Kazakhstan and Russia, has acted as a highway for major migrations throughout history. Therefore, describing the genetic composition of past populations in Central Asia holds value to understanding human mobility in this pivotal region. In this study, we analyse paleogenomic data generated from five humans from Kuygenzhar, Kazakhstan. These individuals date to the early to mid-18th century, shortly after the Kazakh Khanate was founded, a union of nomadic tribes of Mongol Golden Horde and Turkic origins. Genomic analysis identifies that these individuals are admixed with varying proportions of East Asian ancestry, indicating a recent admixture event from East Asia. The high amounts of DNA from the anaerobic Gram-negative bacteria Tannerella forsythia, a periodontal pathogen, recovered from their teeth suggest they may have suffered from periodontitis disease. Genomic analysis of this bacterium identified recently evolved virulence and glycosylation genes including the presence of antibiotic resistance genes predating the antibiotic era. This study provides an integrated analysis of individuals with a diet mostly based on meat (mainly horse and lamb), milk, and dairy products and their oral microbiome.

18.
Genome Med ; 13(1): 171, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711267

ABSTRACT

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen subdivided into lineages termed sequence types (STs). Since the 1950s, successive waves of STs have appeared and replaced previously dominant lineages. One such event has been occurring in China since 2013, with community-associated (CA-MRSA) strains including ST59 largely replacing the previously dominant healthcare-associated (HA-MRSA) ST239. We previously showed that ST59 isolates tend to have a competitive advantage in growth experiments against ST239. However, the underlying genomic and phenotypic drivers of this replacement event are unclear. METHODS: Here, we investigated the replacement of ST239 using whole-genome sequencing data from 204 ST239 and ST59 isolates collected in Chinese hospitals between 1994 and 2016. We reconstructed the evolutionary history of each ST and considered two non-mutually exclusive hypotheses for ST59 replacing ST239: antimicrobial resistance (AMR) profile and/or ability to colonise and persist in the environment through biofilm formation. We also investigated the differences in cytolytic activity, linked to higher virulence, between STs. We performed an association study using the presence and absence of accessory virulence genes. RESULTS: ST59 isolates carried fewer AMR genes than ST239 and showed no evidence of evolving towards higher AMR. Biofilm production was marginally higher in ST59 overall, though this effect was not consistent across sub-lineages so is unlikely to be a sole driver of replacement. Consistent with previous observations of higher virulence in CA-MRSA STs, we observed that ST59 isolates exhibit significantly higher cytolytic activity than ST239 isolates, despite carrying on average fewer putative virulence genes. Our association study identified the chemotaxis inhibitory protein (chp) as a strong candidate for involvement in the increased virulence potential of ST59. We experimentally validated the role of chp in increasing the virulence potential of ST59 by creating Δchp knockout mutants, confirming that ST59 can carry chp without a measurable impact on fitness. CONCLUSIONS: Our results suggest that the ongoing replacement of ST239 by ST59 in China is not associated to higher AMR carriage or biofilm production. However, the increase in ST59 prevalence is concerning since it is linked to a higher potential for virulence, aided by the carriage of the chp gene.


Subject(s)
Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , China/epidemiology , Evolution, Molecular , Genome, Bacterial , Genomics , Genotype , Hospitals , Humans , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Molecular Epidemiology , Multilocus Sequence Typing , Prevalence , Virulence/genetics , Virulence Factors/genetics , Whole Genome Sequencing
19.
iScience ; 24(9): 103021, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34527890

ABSTRACT

Ancient pathogen genomics is an emerging field allowing reconstruction of past epidemics. The demise of post-contact American populations may, at least in part, have been caused by paratyphoid fever brought by Europeans. We retrieved genome-wide data from two Spanish soldiers who were besieging the city of Barcelona in 1652, during the Reapers' War. Their ancestry derived from the Basque region and Sardinia, respectively, (at that time, this island belonged to the Spanish kingdom). Despite the proposed plague epidemic, we could not find solid evidence for the presence of the causative plague agent in these individuals. However, we retrieved from one individual a substantial fraction of the Salmonella enterica serovar Paratyphi C lineage linked to paratyphoid fever in colonial period Mexico. Our results support a growing body of evidence that Paratyphi C enteric fever was more prevalent in Europe and the Americas in the past than it is today.

20.
Infect Genet Evol ; 95: 105075, 2021 11.
Article in English | MEDLINE | ID: mdl-34509646

ABSTRACT

T-cell-mediated immunity to SARS-CoV-2-derived peptides in individuals unexposed to SARS-CoV-2 has been previously reported. This pre-existing immunity was suggested to largely derive from prior exposure to 'common cold' endemic human coronaviruses (HCoVs). To test this, we characterised the sequence homology of SARS-CoV-2-derived T-cell epitopes reported in the literature across the full proteome of the Coronaviridae family. 54.8% of these epitopes had no homology to any of the HCoVs. Further, the proportion of SARS-CoV-2-derived epitopes with any level of sequence homology to the proteins encoded by any of the coronaviruses tested is well-predicted by their alignment-free phylogenetic distance to SARS-CoV-2 (Pearson's r = -0.958). No coronavirus in our dataset showed a significant excess of T-cell epitope homology relative to the proportion of expected random matches, given their genetic similarity to SARS-CoV-2. Our findings suggest that prior exposure to human or animal-associated coronaviruses cannot completely explain the T-cell repertoire in unexposed individuals that recognise SARS-CoV-2 cross-reactive epitopes.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Coronaviridae/immunology , Disease Resistance , Immunologic Memory , SARS-CoV-2/immunology , Animals , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Asymptomatic Diseases , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Chiroptera/virology , Coronaviridae/classification , Coronaviridae/genetics , Coronaviridae/pathogenicity , Cross Reactions , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Eutheria/virology , Humans , Immunity, Cellular , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Severity of Illness Index , T-Lymphocytes/immunology , T-Lymphocytes/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...