Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Express ; 30(3): 3684-3699, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35209622

ABSTRACT

The principles of algebraic image reconstruction are applied to THz computed tomography (THz-CT) in order to account for refraction within the sample. Using the nominal sample geometry as a priori knowledge, a highly accurate and robust image reconstruction algorithm based on the physics of geometric optics is presented. The validity of the geometric forward model is verified by a numerical simulation of Maxwell's equations. Furthermore, the developed method is experimentally tested using measurements performed with a fast THz-CT system based on a THz time-domain spectrometer in transmission mode. Automated evaluations of the reconstructed sample cross sections showed an accuracy of <150 µm.

2.
Opt Express ; 29(10): 15711-15723, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33985267

ABSTRACT

A new approach for image reconstruction in THz computed tomography (THz-CT) is presented. Based on a geometrical optics model containing the THz signal amplitude and phase, a novel algorithm for extracting an average phase from the measured THz signals is derived. Applying the algorithm results in a phase-contrast sinogram, which is further used for image reconstruction. For experimental validation, a fast THz time-domain spectrometer (THz-TDS) in transmission geometry is employed, enabling CT measurements within several minutes. Quantitative evaluation of reconstructed 3D printed plastic profiles reveals the potential of our approach in non-destructive testing of plastic profiles.

3.
Sensors (Basel) ; 20(12)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545693

ABSTRACT

Terahertz time-domain spectroscopy is a useful technique to characterize layered samples and thin films. It gives access to their optical properties and thickness. Such measurements are done in transmission, which requires access to the sample from opposite sides. In reality this is not always possible. In such cases, reflection measurements are the only option, but they are more difficult to implement. Here we propose a method to characterize films in reflection geometry using a polarimetric approach based on the identification of Brewster angle and modeling of the measured signal to extract the refractive index and thickness of the sample. The technique is demonstrated experimentally on an unsupported single layer thin film sample. The extracted optical properties and thickness were in good agreement with established transmission terahertz spectroscopy measurements. The new method has the potential to cover a wide range of applications, both for research and industrial purposes.

SELECTION OF CITATIONS
SEARCH DETAIL