Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Autoimmun ; 144: 103175, 2024 04.
Article in English | MEDLINE | ID: mdl-38387105

ABSTRACT

SARS-CoV-2-specific CD8+ T cells recognize conserved viral peptides and in the absence of cross-reactive antibodies form an important line of protection against emerging viral variants as they ameliorate disease severity. SARS-CoV-2 mRNA vaccines induce robust spike-specific antibody and T cell responses in healthy individuals, but their effectiveness in patients with chronic immune-mediated inflammatory disorders (IMIDs) is less well defined. These patients are often treated with systemic immunosuppressants, which may negatively affect vaccine-induced immunity. Indeed, TNF inhibitor (TNFi)-treated inflammatory bowel disease (IBD) patients display reduced ability to maintain SARS-CoV-2 antibody responses post-vaccination, yet the effects on CD8+ T cells remain unclear. Here, we analyzed the impact of IBD and TNFi treatment on mRNA-1273 vaccine-induced CD8+ T cell responses compared to healthy controls in SARS-CoV-2 experienced and inexperienced patients. CD8+ T cells were analyzed for their ability to recognize 32 SARS-CoV-2-specific epitopes, restricted by 10 common HLA class I allotypes using heterotetramer combinatorial coding. This strategy allowed in-depth ex vivo profiling of the vaccine-induced CD8+ T cell responses using phenotypic and activation markers. mRNA vaccination of TNFi-treated and untreated IBD patients induced robust spike-specific CD8+ T cell responses with a predominant central memory and activated phenotype, comparable to those in healthy controls. Prominent non-spike-specific CD8+ T cell responses were observed in SARS-CoV-2 experienced donors prior to vaccination. Non-spike-specific CD8+ T cells persisted and spike-specific CD8+ T cells notably expanded after vaccination in these patient cohorts. Our data demonstrate that regardless of TNFi treatment or prior SARS-CoV-2 infection, IBD patients benefit from vaccination by inducing a robust spike-specific CD8+ T cell response.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Humans , CD8-Positive T-Lymphocytes , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Tumor Necrosis Factor Inhibitors , Vaccination , Antibodies , Inflammatory Bowel Diseases/drug therapy , Antibodies, Viral
2.
Clin Transl Immunology ; 11(10): e1423, 2022.
Article in English | MEDLINE | ID: mdl-36254196

ABSTRACT

Objectives: High-magnitude CD8+ T cell responses are associated with mild COVID-19 disease; however, the underlying characteristics that define CD8+ T cell-mediated protection are not well understood. The antigenic breadth and the immunodominance hierarchies of epitope-specific CD8+ T cells remain largely unexplored and are essential for the development of next-generation broad-protective vaccines. This study identified a broad spectrum of conserved SARS-CoV-2 CD8+ T cell epitopes and defined their respective immunodominance and phenotypic profiles following SARS-CoV-2 infection. Methods: CD8+ T cells from 51 convalescent COVID-19 donors were analysed for their ability to recognise 133 predicted and previously described SARS-CoV-2-derived peptides restricted by 11 common HLA class I allotypes using heterotetramer combinatorial coding, which combined with phenotypic markers allowed in-depth ex vivo profiling of CD8+ T cell responses at quantitative and phenotypic levels. Results: A comprehensive panel of 49 mostly conserved SARS-CoV-2-specific CD8+ T cell epitopes, including five newly identified low-magnitude epitopes, was established. We confirmed the immunodominance of HLA-A*01:01/ORF1ab1637-1646 and B*07:02/N105-113 and identified B*35:01/N325-333 as a third epitope with immunodominant features. The magnitude of subdominant epitope responses, including A*03:01/N361-369 and A*02:01/S269-277, depended on the donors' HLA-I context. All epitopes expressed prevalent memory phenotypes, with the highest memory frequencies in severe COVID-19 donors. Conclusion: SARS-CoV-2 infection induces a predominant CD8+ T memory response directed against a broad spectrum of conserved SARS-CoV-2 epitopes, which likely contributes to long-term protection against severe disease. The observed immunodominance hierarchy emphasises the importance of T cell epitopes derived from nonspike proteins to the overall protective and cross-reactive immune response, which could aid future vaccine strategies.

3.
Eur J Immunol ; 52(3): 389-403, 2022 03.
Article in English | MEDLINE | ID: mdl-34897659

ABSTRACT

iNKT cells are CD1d-restricted T cells that play a pro-inflammatory or regulatory role in infectious and autoimmune diseases. Thymic precursors of iNKT cells eventually develop into distinct iNKT1, iNKT2, and iNKT17 lineages in the periphery. It remains unclear whether iNKT cells retain developmental potential after lineage commitment. iNKT cells acquire a similar phenotype as tissue-resident memory T cells, suggesting that they also differentiate along a trajectory that enables them to persist in peripheral tissues. Here, we addressed whether lineage commitment and memory differentiation are parallel or sequential developmental programs of iNKT cells. We defined three subsets of peripheral iNKT cells using CD62L and CD69 expression that separate central, effector, and resident memory phenotype cells. The majority of iNKT1 cells displayed a resident phenotype in contrast to iNKT2 and iNKT17 cells. The transcription factor Hobit, which is upregulated in iNKT cells, plays an essential role in their development together with its homolog Blimp-1. Hobit and Blimp-1 instructed the differentiation of central memory iNKT cells into resident memory iNKT cells, but did not impact commitment into iNKT1, iNKT2, or iNKT17 lineages. Thus, we conclude that memory differentiation and the establishment of residency occur after lineage commitment through a Hobit and Blimp-1-driven transcriptional program.


Subject(s)
Natural Killer T-Cells , Animals , Cell Differentiation , Gene Expression Regulation , Mice , Mice, Inbred C57BL , Phenotype , Transcription Factors/metabolism
4.
J Immunother Cancer ; 8(2)2020 12.
Article in English | MEDLINE | ID: mdl-33293355

ABSTRACT

BACKGROUND: Adenoviral vectors emerged as important platforms for cancer immunotherapy. Vaccination with adenoviral vectors is promising in this respect, however, their specific mechanisms of action are not fully understood. Here, we assessed the development and maintenance of vaccine-induced tumor-specific CD8+ T cells elicited upon immunization with adenoviral vectors. METHODS: Adenoviral vaccine vectors encoding the full-length E7 protein from human papilloma virus (HPV) or the immunodominant epitope from E7 were generated, and mice were immunized intravenously with different quantities (107, 108 or 109 infectious units). The magnitude, kinetics and tumor protection capacity of the induced vaccine-specific T cell responses were evaluated. RESULTS: The adenoviral vaccines elicited inflationary E7-specific memory CD8+ T cell responses in a dose-dependent manner. The magnitude of these vaccine-specific CD8+ T cells in the circulation related to the development of E7-specific CD8+ tissue-resident memory T (TRM) cells, which were maintained for months in multiple tissues after vaccination. The vaccine-specific CD8+ T cell responses conferred long-term protection against HPV-induced carcinomas in the skin and liver, and this protection required the induction and accumulation of CD8+ TRM cells. Moreover, the formation of CD8+ TRM cells could be enhanced by temporal targeting CD80/CD86 costimulatory interactions via CTLA-4 blockade early after immunization. CONCLUSIONS: Together, these data show that adenoviral vector-induced CD8+ T cell inflation promotes protective TRM cell populations, and this can be enhanced by targeting CTLA-4.


Subject(s)
Cancer Vaccines/immunology , Immunologic Memory/immunology , Immunotherapy/methods , Neoplasms/drug therapy , Animals , Humans , Mice , Neoplasms/immunology
5.
EMBO Rep ; 18(4): 619-631, 2017 04.
Article in English | MEDLINE | ID: mdl-28223321

ABSTRACT

Enhancer of zeste 2 (Ezh2) mainly methylates lysine 27 of histone-H3 (H3K27me3) as part of the polycomb repressive complex 2 (PRC2) together with Suz12 and Eed. However, Ezh2 can also modify non-histone substrates, although it is unclear whether this mechanism has a role during development. Here, we present evidence for a chromatin-independent role of Ezh2 during T-cell development and immune homeostasis. T-cell-specific depletion of Ezh2 induces a pronounced expansion of natural killer T (NKT) cells, although Ezh2-deficient T cells maintain normal levels of H3K27me3. In contrast, removal of Suz12 or Eed destabilizes canonical PRC2 function and ablates NKT cell development completely. We further show that Ezh2 directly methylates the NKT cell lineage defining transcription factor PLZF, leading to its ubiquitination and subsequent degradation. Sustained PLZF expression in Ezh2-deficient mice is associated with the expansion of a subset of NKT cells that cause immune perturbation. Taken together, we have identified a chromatin-independent function of Ezh2 that impacts on the development of the immune system.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Homeostasis , Immunity/genetics , Animals , Cell Differentiation , Cell Line , Gene Expression , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Methylation , Mice , Mice, Knockout , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Promyelocytic Leukemia Zinc Finger Protein , Protein Binding , Proteolysis , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Thymocytes/cytology , Thymocytes/immunology , Thymocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...