Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 10: 1283083, 2023.
Article in English | MEDLINE | ID: mdl-38028537

ABSTRACT

Background: Early diagnosis of inherited metabolic diseases (IMDs) is important because treatment may lead to reduced mortality and improved prognosis. Due to their diversity, it is a challenge to diagnose IMDs in time, effecting an emerging need for a comprehensive test to acquire an overview of metabolite status. Untargeted metabolomics has proven its clinical potential in diagnosing IMDs, but is not yet widely used in genetic metabolic laboratories. Methods: We assessed the potential role of plasma untargeted metabolomics in a clinical diagnostic setting by using direct infusion high resolution mass spectrometry (DI-HRMS) in parallel with traditional targeted metabolite assays. We compared quantitative data and qualitative performance of targeted versus untargeted metabolomics in patients suspected of an IMD (n = 793 samples) referred to our laboratory for 1 year. To compare results of both approaches, the untargeted data was limited to polar metabolites that were analyzed in targeted plasma assays. These include amino acid, (acyl)carnitine and creatine metabolites and are suitable for diagnosing IMDs across many of the disease groups described in the international classification of inherited metabolic disorders (ICIMD). Results: For the majority of metabolites, the concentrations as measured in targeted assays correlated strongly with the semi quantitative Z-scores determined with DI-HRMS. For 64/793 patients, targeted assays showed an abnormal metabolite profile possibly indicative of an IMD. In 55 of these patients, similar aberrations were found with DI-HRMS. The remaining 9 patients showed only marginally increased or decreased metabolite concentrations that, in retrospect, were most likely to be clinically irrelevant. Illustrating its potential, DI-HRMS detected additional patients with aberrant metabolites that were indicative of an IMD not detected by targeted plasma analysis, such as purine and pyrimidine disorders and a carnitine synthesis disorder. Conclusion: This one-year pilot study showed that DI-HRMS untargeted metabolomics can be used as a first-tier approach replacing targeted assays of amino acid, acylcarnitine and creatine metabolites with ample opportunities to expand. Using DI-HRMS untargeted metabolomics as a first-tier will open up possibilities to look for new biomarkers.

2.
Transl Psychiatry ; 12(1): 97, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264571

ABSTRACT

The 22q11.2 deletion syndrome (22q11.2DS) is characterized by a well-defined microdeletion and is associated with increased risk of neurodevelopmental phenotypes including autism spectrum disorders (ASD) and intellectual impairment. The typically deleted region in 22q11.2DS contains multiple genes with the potential of altering metabolism. Deficits in metabolic processes during early brain development may help explain the increased prevalence of neurodevelopmental phenotypes seen in 22q11.2DS. However, relatively little is known about the metabolic impact of the 22q11.2 deletion, while such insight may lead to increased understanding of the etiology. We performed untargeted metabolic analysis in a large sample of dried blood spots derived from 49 22q11.2DS patients and 87 controls, to identify a metabolic signature for 22q11.2DS. We also examined trait-specific metabolomic patterns within 22q11.2DS patients, focusing on intelligence (intelligence quotient, IQ) and ASD. We used the Boruta algorithm to select metabolites distinguishing patients from controls, patients with ASD from patients without, and patients with an IQ score in the lowest range from patients with an IQ score in the highest range. The relevance of the selected metabolites was visualized with principal component score plots, after which random forest analysis and logistic regression were used to measure predictive performance of the selected metabolites. Analysis yielded a distinct metabolic signature for 22q11.2DS as compared to controls, and trait-specific (IQ and ASD) metabolomic patterns within 22q11.2DS patients. The metabolic characteristics of 22q11.2DS provide insights in biological mechanisms underlying the neurodevelopmental phenotype and may ultimately aid in identifying novel therapeutic targets for patients with developmental disorders.


Subject(s)
Autism Spectrum Disorder , DiGeorge Syndrome , Autism Spectrum Disorder/epidemiology , DiGeorge Syndrome/genetics , Humans , Intelligence , Intelligence Tests , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...