Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Ecol ; 20(1): 47, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32814584

ABSTRACT

BACKGROUND: Forest habitats are important biodiversity refuges for a wide variety of bird species. Parasitism may modulate host species presence and abundance, and parasite effects can change according to forest management practices. Such processes are not well studied in vector-borne avian haemosporidians. We analyzed the effects of forest management on bird-dipteran-haemosporidian interactions, using seven common bird species in managed and unmanaged beech forest habitats in northeastern Germany. We assumed that forest structural heterogeneity affects parasite population parameters in avian hosts (i.e., prevalence and parasitemia), through its effect on the condition of the avian host but also through varying vector abundances. RESULTS: Parasite prevalence was high (about 80%) and homogeneous across different beech forest categories (i.e., young, old, unmanaged) and for all bird species, except Erithacus rubecula (35%). Parasitemia varied across bird species but not across forest categories within each avian species (lowest parasitemia were found in E. rubecula, Turdus merula, and Turdus philomelos). In our study system, we found that vector abundance was not the main driver of parasite dynamics. We found that forest structure affects parasite infection probability directly and potentially host condition via available resources that have to be used either to combat infections (i.e., high parasitemia) or to maintain a good body condition. CONCLUSIONS: The effects of each of the predictors were bird species-specific, and we found that Diptera vectors were not the foremost influence in our host-vector-parasite system. Effects of forest habitat variables indicated that for most bird species in this study, habitat regulation of infection probability was more likely (i.e., E. rubecula, Fringilla coelebs, Sylvia atricapilla), whereas for Parus major habitat characteristics impacted first individuals' body condition and subsequently the probability of infection. Our findings emphasize the need of species-specific analyses and to use continuous forest structural parameters (e.g., the proportion of gap, south facing aspect) to better understand habitat and land use effects on host-vector-parasite dynamics.


Subject(s)
Haemosporida , Parasites , Passeriformes , Animals , Forests , Germany
2.
Sci Rep ; 9(1): 8779, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217486

ABSTRACT

The presence of insect vectors is a key prerequisite for transmission of vector-borne disease such as avian haemosporidians. In general, the effects of land use change on Diptera vectors are not well studied; the response of vectors to forest management depends on vector species, as has been shown previously for the birds. We tested if abundance of insects from different Diptera families and haemosporidian infection are affected through alteration of habitat structural variables (measured by LiDAR) and forest management intensities. We identified higher large-scale variation of female insect abundance in northeastern than in southwestern Germany. Unmanaged forest stands had higher Diptera insect abundances. We found that abundance of female Diptera increased with the amount of forest gaps but decreased in forest plots with more south facing aspect, higher habitat structural heterogeneity, temperature and humidity. We found that haemosporidian infections in Diptera insects increased with increased management intensity and more canopy structural diversity (e.g., amount of edge habitat), but decreased with a denser shrub layer, deeper leaf litter and higher humidity (characteristics for unmanaged forest stands). Although higher forest management intensity decreased vector abundance, the haemosporidian infections in the vectors increased, indicating a significant effect of forest management on disease dynamics.


Subject(s)
Diptera/parasitology , Ecosystem , Haemosporida/physiology , Insect Vectors/parasitology , Animals , Female , Forests , Linear Models
3.
Front Plant Sci ; 8: 215, 2017.
Article in English | MEDLINE | ID: mdl-28270821

ABSTRACT

Seed dressing, i.e., the treatment of crop seeds with insecticides and/or fungicides, aiming to protect seeds from pests and diseases, is widely used in conventional agriculture. During the growing season, those crop fields often receive additional broadband herbicide applications. However, despite this broad utilization, very little is known on potential side effects or interactions between these different pesticide classes on soil organisms. In a greenhouse pot experiment, we studied single and interactive effects of seed dressing of winter wheat (Triticum aestivum L. var. Capo) with neonicotinoid insecticides and/or strobilurin and triazolinthione fungicides and an additional one-time application of a glyphosate-based herbicide on the activity of earthworms, soil microorganisms, litter decomposition, and crop growth. To further address food-web interactions, earthworms were introduced to half of the experimental units as an additional experimental factor. Seed dressings significantly reduced the surface activity of earthworms with no difference whether insecticides or fungicides were used. Moreover, seed dressing effects on earthworm activity were intensified by herbicides (significant herbicide × seed dressing interaction). Neither seed dressings nor herbicide application affected litter decomposition, soil basal respiration, microbial biomass, or specific respiration. Seed dressing did also not affect wheat growth. We conclude that interactive effects on soil biota and processes of different pesticide classes should receive more attention in ecotoxicological research.

SELECTION OF CITATIONS
SEARCH DETAIL
...