Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(30): 13807-13814, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39012030

ABSTRACT

In this work, the reactivity of tetrel-functionalized phosphorus clusters toward organoazides is probed. Clusters (Me3Si)3P7 (1) and (Me3Ge)3P7 (2) were reacted with benzyl azide, phenyl azide, and 4-bromophenyl azide, and it was found that the [RN] (R = benzyl, phenyl, and 4-bromophenyl) unit from the azide inserted into the phosphorus-tetrel bonds on the cluster, accompanied by N2 elimination. Through control of the azide stoichiometry, the mono-, bis-, and tris-inserted products could be observed, consistent with these insertions proceeding in a stepwise manner. The bonding between the amine moieties and clusters was further investigated by computational chemistry, and the findings were consistent with the phosphorus cluster having undergone a formal oxidation. These insertion reactions are a convenient means of accessing Zintl clusters functionalized with exo-nitrogen-bonded moieties, which, to the best of our knowledge, were previously unknown.

2.
Dalton Trans ; 52(38): 13787-13796, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37721024

ABSTRACT

Despite p-block clusters being known for over a century, their application as catalysts to mediate organic transformations is underexplored. Here, the boron functionalized [P7] cluster [(BBN)P7]2- ([1]2-; BBN = 9-borabicyclo[3.3.1]nonane) is applied in the dearomatized reduction of pyridines, as well as the hydroboration of imines and nitriles. These transformations afford amine products, which are important precursors to pharmaceuticals, agrochemicals, and polymers. Catalyst [1]2- has high stability in these reductions: recycling nine times in quinoline hydroboration led to virtually no loss in catalyst performance. The catalyst can also be recycled between two different organic transformations, again with no loss in catalyst competency. The mechanism for pyridine reduction was probed experimentally using variable time normalization analysis, and computationally using density functional theory. This work demonstrates that Zintl clusters can mediate the reduction of nitrogen containing substrates in a transition metal-free manner.

3.
Dalton Trans ; 52(8): 2384-2391, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36723201

ABSTRACT

Despite being known for decades, the solution-state molecular chemistry of heptapnictogen ([Pn7]3-; Pn = P, As) clusters is not well established. Here we study heavy element derivatives of tetrel functionalized heptapnictogen clusters towards heteroallene capture, specifically isocyanates, an isothiocyanate and CO2 are probed. Clusters (Me3Ge)3P7 (1), (Et3Ge)3P7 (2), (nBu3Sn)3P7 (3), and (Me3Si)3As7 (4) were all found to capture isocyanates between all three of their tetrel-pnictogen bonds. In the case of phenyl isocyanate insertion, tetrel coordination at the isocyanate nitrogen atoms is preferred, while in the case of p-toluenesulfonyl isocyanate insertion, tetrel coordination at oxygen is preferred. Furthermore, the reaction of (Me3Si)3P7 with CO2 gave NMR spectra consistent with the capture of the greenhouse gas. Heteroallene insertion at these clusters was also studied using density functional theory.

4.
J Am Chem Soc ; 144(46): 21213-21223, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36351036

ABSTRACT

The first fully characterized boron-functionalized heptaphosphide Zintl cluster, [(BBN)P7]2- ([1]2-), is synthesized by dehydrocoupling [HP7]2-. Dehydrocoupling is a previously unprecedented reaction pathway to functionalize Zintl clusters. [Na(18-c-6)]2[1] was employed as a transition metal-free catalyst for the hydroboration of aldehydes and ketones. Moreover, the greenhouse gas carbon dioxide (CO2) was efficiently and selectively reduced to methoxyborane. This work represents the first examples of Zintl catalysis where the transformation is transition metal-free and where the cluster is noninnocent.

5.
Dalton Trans ; 51(47): 18329-18336, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36416146

ABSTRACT

Clusters of main group elements, such as phosphorus, arsenic, germanium, and tin - called Zintl clusters - have been known for more than a century. However, their application in main group catalysis is largely unknown. Here, we tether boranes to a seven-atom phosphorus cluster ({C8H14}BCH2CH2SiMe2)3P7 (2) and we demonstrate Lewis acid catalysis as proof-of-principle that boron chemistry can be mapped onto clusters using this method. Catalyst 2 was employed to mediate key organic transformations, including the hydroboration of carbodiimides, isocyanates, ketones, alkenes, alkynes, and nitriles. To the best of our knowledge, this is the first application of Zintl-based clusters as an innocent platform in metal-free catalysis. By chaining boron, its treasure chest of chemistry can be unlocked at these clusters. Hence, beyond catalysis this method could find applications for main group clusters in neutron capture therapy, stimuli responsive materials, and cross-coupling, and frustrated Lewis pair and functional polymer chemistries.

6.
Chemistry ; 28(6): e202103737, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-34851528

ABSTRACT

Despite being known for decades the chemical reactivity of homoatomic seven-atom phosphorus clusters towards small molecules remains largely unexplored. Here, we report that neutral tris(silyl) functionalised heptaphosphane (P7 (SiR3 )3 ) cages are capable of heteroallene capture between the P-Si bonds of the cluster. A range of isocyanates and an isothiocyanate were investigated. In the case of isocyanates, silyl bonding at oxygen or nitrogen is regioselectively directed by the functional group on the isocyanate and substituents on the silyl moiety. Above all, we find that captured isothiocyanate molecules can be exchanged for isocyanate molecules, indicative of small molecule catch and release. Small molecule catch and release at these Zintl-derived clusters reveals their potential application as chemical storage materials or as reusable probes.

7.
Angew Chem Int Ed Engl ; 60(3): 1567-1572, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33022877

ABSTRACT

"GaOTf" is a simple, convenient source of low-valent gallium for synthetic chemistry and catalysis. However, little is currently known about its composition or reactivity. In this work, 71 Ga NMR spectroscopy shows the presence of [Ga(arene)n ]+ salts on oxidation of Ga metal with AgOTf in arene solvents. However, a more complex picture of speciation is uncovered by X-ray diffraction studies. In all cases, mixed-valence compounds containing Ga-arene and Ga-OTf coordination motifs, in addition to an unusual "naked" [Ga]+ ion, are found. Addition of 18-crown-6 allows for the isolation of a discrete GaI crown complex. Evidence of a potential intermediate in the formation of "GaOTf" has been isolated in the form of the bimetallic silver(I)/gallium(I) cluster anion [Ag4 {Ga(OTf)3 }4 (µ-Ga)6 (OTf)4 ]2- .

8.
Dalton Trans ; 49(42): 14758-14765, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33140786

ABSTRACT

Although discovered more than a century ago, the study of Zintl anions is experiencing a renaissance. Initial investigations on Zintl anions were focused on the structure, bonding, and physical properties of both the solid-state Zintl phases and solution-state solvated salts. Advances over the last few decades included their reactivity with transition metals where both exo-coordination and encapsulation have been observed, organic derivatization, their oligomerisation chemistry, and the preparation of heteroatomic systems. Reports on these developments have been previously discussed and reviewed. Herein, we present the most recent developments in the solution-state chemistry of homoatomic group 15 Zintl clusters and an outlook for the field. We believe frontiers in this area are best represented by recent additions to the library of homoatomic polybismuthide clusters, new synthetic routes for the preparation and functionlisation of homoatomic group 15 clusters, and small molecule activation using group 15 homoatomic Zintl clusters.

SELECTION OF CITATIONS
SEARCH DETAIL