Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Prenat Diagn ; 43(4): 527-543, 2023 04.
Article in English | MEDLINE | ID: mdl-36647814

ABSTRACT

OBJECTIVE: We performed a 1-year evaluation of a novel strategy of simultaneously analyzing single nucleotide variants (SNVs), copy number variants (CNVs) and copy-number-neutral Absence-of-Heterozygosity from Whole Exome Sequencing (WES) data for prenatal diagnosis of fetuses with ultrasound (US) anomalies and a non-causative QF-PCR result. METHODS: After invasive diagnostics, whole exome parent-offspring trio-sequencing with exome-wide CNV analysis was performed in pregnancies with fetal US anomalies and a non-causative QF-PCR result (WES-CNV). On request, additional SNV-analysis, restricted to (the) requested gene panel(s) only (with the option of whole exome SNV-analysis afterward) was performed simultaneously (WES-CNV/SNV) or as rapid SNV-re-analysis, following a normal CNV analysis. RESULTS: In total, 415 prenatal samples were included. Following a non-causative QF-PCR result, WES-CNV analysis was initially requested for 74.3% of the chorionic villus (CV) samples and 45% of the amniotic fluid (AF) samples. In case WES-CNV analysis did not reveal a causative aberration, SNV-re-analysis was requested in 41.7% of the CV samples and 17.5% of the AF samples. All initial analyses could be finished within 2 weeks after sampling. For SNV-re-analysis during pregnancy, turn-around-times (TATs) varied between one and 8 days. CONCLUSION: We show a highly efficient all-in-one WES-based strategy, with short TATs, and the option of rapid SNV-re-analysis after a normal CNV result.


Subject(s)
DNA Copy Number Variations , Fetus , Pregnancy , Female , Humans , Exome Sequencing , Heterozygote , Fetus/diagnostic imaging , Fetus/abnormalities , Nucleotides
2.
Int J Cancer ; 136(5): E207-18, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25082736

ABSTRACT

HPV-related HNSCC generally have a better prognosis than HPV-negative HNSCC. However, a subgroup of HPV-positive tumors with poor prognosis has been recognized, particularly related to smoking, EGFR overexpression and chromosomal instability. Viral integration into the host genome might contribute to carcinogenesis, as is shown for cervical carcinomas. Therefore, all HPV16-positive HNSCC cell lines currently available have been carefully analyzed for viral and host genome parameters. The viral integration status, viral load, viral gene expression and the presence of aneusomies was evaluated in the cell lines UD-SCC-2, UM-SCC-047, UM-SCC-104, UPCI:SCC090, UPCI:SCC152, UPCI:SCC154 and 93VU147T. HPV integration was examined using FISH, APOT-PCR and DIPS-PCR. Viral load and the expression of the viral genes E2, E6 and E7 were determined via quantitative PCR. All cell lines showed integration-specific staining patterns and signals indicating transcriptional activity using FISH. APOT- and DIPS-PCR identified integration-derived fusion products in six cell lines and only episomal products for UM-SCC-104. Despite the observed differences in viral load and the number of viral integration sites, this did not relate to the identified viral oncogene expression. Furthermore, cell lines exhibited EGFR expression and aneusomy (except UPCI:SCC154). In conclusion, all HPV16-positive HNSCC cell lines showed integrated and/or episomal viral DNA that is transcriptionally active, although viral oncogene expression was independent of viral copy number and the number of viral integration sites. Because these cell lines also contain EGFR expression and aneusomy, which are parameters of poor prognosis, they should be considered suitable model systems for the development of new antiviral therapies.


Subject(s)
Carcinoma, Squamous Cell/genetics , Head and Neck Neoplasms/genetics , Human papillomavirus 16/genetics , Oncogene Proteins, Viral/genetics , Papillomavirus Infections/genetics , Viral Load , Virus Integration/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/virology , DNA, Viral/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Gene Expression Profiling , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/virology , Human papillomavirus 16/isolation & purification , Humans , Immunoenzyme Techniques , In Situ Hybridization, Fluorescence , Male , Middle Aged , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Polymerase Chain Reaction , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...