Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 322(6): H994-H1002, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35333114

ABSTRACT

Sex is increasingly emerging as determinant of right ventricular (RV) adaptation to abnormal loading conditions. It is unknown, however, whether sex-related differences already occur in childhood. Therefore, this study aimed to assess sex differences in a juvenile model of early RV pressure load by pulmonary artery banding (PAB) during transition from pre to postpuberty. Rat pups (n = 57, 3 wk old, 30-45 g) were subjected to PAB or sham surgery. Animals were euthanized either before or after puberty (4 and 8 wk postsurgery, respectively). Male PAB rats demonstrated failure to thrive already after 4 wk, whereas females did not. After 8 wk, female PAB rats showed less clinical symptoms of RV failure than male PAB rats. RV pressure-volume analysis demonstrated increased end-systolic elastance after 4 wk in females only, and a trend toward preserved end-diastolic elastance in female PAB rats compared with males (P = 0.055). Histology showed significantly less RV myocardial fibrosis in female compared with male PAB rats 8 wk after surgery. Myosin heavy chain 7-to-6 ratio switch and calcineurin signaling were less pronounced in female PAB rats compared with males. In this juvenile rat model of RV pressure load, female rats appeared to be less prone to clinical heart failure compared with males. This was driven by increased RV contractility before puberty, and better preservation of diastolic function with less RV myocardial fibrosis after puberty. These findings show that RV adaptation to increased loading differs between sexes already before the introduction of pubertal hormones.NEW & NOTEWORTHY In this study, we describe sex differences in our unique weanling rat model of increased RV pressure load by pulmonary artery banding. We are the first to assess temporal sex-related differences in RV adaptation during pubertal development. Female rats show superior RV function and less diastolic dysfunction and fibrosis compared with male rats. These differences are already present before puberty, indicating that the differences in RV adaptation are not only determined by sex hormones.


Subject(s)
Heart Failure , Ventricular Dysfunction, Right , Animals , Female , Fibrosis , Heart Failure/pathology , Heart Ventricles , Male , Rats , Ventricular Dysfunction, Right/pathology , Ventricular Function, Right , Ventricular Pressure
2.
Front Physiol ; 12: 557514, 2021.
Article in English | MEDLINE | ID: mdl-33716758

ABSTRACT

BACKGROUND: Right ventricular (RV) function and failure are key determinants of morbidity and mortality in various cardiovascular diseases. Myocardial fibrosis is regarded as a contributing factor to heart failure, but its importance in RV failure has been challenged. This study aims to assess whether myocardial fibrosis drives the transition from compensated to decompensated volume load-induced RV dysfunction. METHODS: Wistar rats were subjected to aorto-caval shunt (ACS, n = 23) or sham (control, n = 15) surgery, and sacrificed after 1 month, 3 months, or 6 months. Echocardiography, RV pressure-volume analysis, assessment of gene expression and cardiac histology were performed. RESULTS: At 6 months, 6/8 ACS-rats (75%) showed clinical signs of RV failure (pleural effusion, ascites and/or liver edema), whereas at 1 month and 3 months, no signs of RV failure had developed yet. Cardiac output has increased two- to threefold and biventricular dilatation occurred, while LV ejection fraction gradually decreased. At 1 month and 3 months, RV end-systolic elastance (Ees) remained unaltered, but at 6 months, RV Ees had decreased substantially. In the RV, no oxidative stress, inflammation, pro-fibrotic signaling (TGFß1 and pSMAD2/3), or fibrosis were present at any time point. CONCLUSIONS: In the ACS rat model, long-term volume load was initially well tolerated at 1 month and 3 months, but induced overt clinical signs of end-stage RV failure at 6 months. However, no myocardial fibrosis or increased pro-fibrotic signaling had developed. These findings indicate that myocardial fibrosis is not involved in the transition from compensated to decompensated RV dysfunction in this model.

3.
Sci Transl Med ; 12(554)2020 07 29.
Article in English | MEDLINE | ID: mdl-32727916

ABSTRACT

Pulmonary arterial hypertension (PAH) in congenital cardiac shunts can be reversed by hemodynamic unloading (HU) through shunt closure. However, this reversibility potential is lost beyond a certain point in time. The reason why PAH becomes irreversible is unknown. In this study, we used MCT+shunt-induced PAH in rats to identify a dichotomous reversibility response to HU, similar to the human situation. We compared vascular profiles of reversible and irreversible PAH using RNA sequencing. Cumulatively, we report that loss of reversibility is associated with a switch from a proliferative to a senescent vascular phenotype and confirmed markers of senescence in human PAH-CHD tissue. In vitro, we showed that human pulmonary endothelial cells of patients with PAH are more vulnerable to senescence than controls in response to shear stress and confirmed that the senolytic ABT263 induces apoptosis in senescent, but not in normal, endothelial cells. To support the concept that vascular cell senescence is causal to the irreversible nature of end-stage PAH, we targeted senescence using ABT263 and induced reversal of the hemodynamic and structural changes associated with severe PAH refractory to HU. The factors that drive the transition from a reversible to irreversible pulmonary vascular phenotype could also explain the irreversible nature of other PAH etiologies and provide new leads for pharmacological reversal of end-stage PAH.


Subject(s)
Heart Defects, Congenital , Pulmonary Arterial Hypertension , Animals , Cellular Senescence , Endothelial Cells , Familial Primary Pulmonary Hypertension , Humans , Rats
4.
J Transl Med ; 13: 115, 2015 Apr 11.
Article in English | MEDLINE | ID: mdl-25884700

ABSTRACT

BACKGROUND: The upper gastrointestinal tract is home to some of most notorious cancers like esophagogastric and pancreatic cancer. Several factors contribute to the lethality of these tumors, but one that stands out for both tumor types is the strong inter- as well as intratumor heterogeneity. Unfortunately, genetic tumor models do not match this heterogeneity, and for esophageal cancer no adequate genetic models exist. To allow for an improved understanding of these diseases, tissue banks with sufficient amount of samples to cover the extent of diversity of human cancers are required. Additionally, xenograft models that faithfully mimic and span the breadth of human disease are essential to perform meaningful functional experiments. METHODS: We describe here the establishment of a tissue biobank, patient derived xenografts (PDXs) and cell line models of esophagogastric and pancreatic cancer patients. Biopsy material was grafted into immunocompromised mice and PDXs were used to establish primary cell cultures to perform functional studies. Expression of Hedgehog ligands in patient tumor and matching PDX was assessed by immunohistochemical staining, and quantitative real-time PCR as well as flow cytometry was used for cultured cells. Cocultures with Hedgehog reporter cells were performed to study paracrine signaling potency. Furthermore, SHH expression was modulated in primary cultures using lentiviral mediated knockdown. RESULTS: We have established a panel of 29 PDXs from esophagogastric and pancreatic cancers, and demonstrate that these PDXs mirror several of the (immuno)histological and biochemical characteristics of the original tumors. Derived cell lines can be genetically manipulated and used to further study tumor biology and signaling capacity. In addition, we demonstrate an active (paracrine) Hedgehog signaling mode by both tumor types, the magnitude of which has not been compared directly in previous studies. CONCLUSIONS: Our established PDXs and their matching primary cell lines retain important characteristics seen in the original tumors, and this should enable future studies to address the responses of these tumors to different treatment modalities, but also help in gaining mechanistic insight in how some tumors respond to certain regimens and others do not.


Subject(s)
Digestive System Neoplasms/pathology , Upper Gastrointestinal Tract/pathology , Xenograft Model Antitumor Assays , Aged , Animals , Cell Line, Tumor , Digestive System Neoplasms/metabolism , Female , Genes, Reporter , Hedgehog Proteins/metabolism , Humans , Ligands , Male , Mice , Middle Aged , Paracrine Communication , Signal Transduction , Stromal Cells/pathology , Tissue Banks , Upper Gastrointestinal Tract/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...