Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 36(13): 1816-1828, 2017 03 30.
Article in English | MEDLINE | ID: mdl-27669437

ABSTRACT

DOCK proteins are guanine nucleotide exchange factors for Rac and Cdc42 GTPases. DOCK1 is the founding member of the family and acts downstream of integrins via the canonical Crk-p130Cas complex to activate Rac GTPases in numerous contexts. In contrast, DOCK5, which possesses the greatest similarity to DOCK1, remains sparingly studied. Here we establish that DOCK5 has a non-redundant role in regulating motile and invasive capacities of epithelial cells. DOCK1 is constitutively associated with sites of integrin attachment termed focal adhesions (FAs). In contrast, we demonstrate that DOCK5 recruitment to FAs in Hela cells is restricted by GIT2, an established regulator of FA signaling. We determine that GIT2 is targeted to FAs in response to Rho-ROCK signaling and actomyosin contractility. Accordingly, inhibition of ROCK activity or MLC function promotes enrichment of DOCK5 in membrane protrusions and nascent cell-substratum adhesions. We further demonstrate that GIT2 inhibits the interaction of DOCK5 with Crk. Moreover, we show that depletion of GIT2 promotes DOCK5-dependent activation of the Crk-p130Cas signaling cascade to promote Rac1-mediated lamellipodial protrusion and FA turnover. The antagonism between GIT2 and DOCK5 extends to non-transformed MCF10A mammary epithelial cells, with DOCK5 'dialing-up' and GIT2 'dialing-down' invasiveness. Finally, we determine that DOCK5 inhibition attenuates invasion and metastasis of MDA-MB-231 cells and prolongs life span of mice injected with these cells. Collectively, our work identifies DOCK5 as a key regulator of epithelial invasion and metastasis, and demonstrates that suppression of DOCK5 by GIT2 represents a previously unappreciated mechanism for coordination of Rho and Rac GTPases.


Subject(s)
GTPase-Activating Proteins/genetics , Guanine Nucleotide Exchange Factors/genetics , Acute-Phase Proteins/metabolism , Animals , Cell Adhesion/genetics , Cell Line, Tumor , Cell Movement/genetics , Disease Models, Animal , Female , GTPase-Activating Proteins/metabolism , Gene Expression , Guanine Nucleotide Exchange Factors/metabolism , HeLa Cells , Heterografts , Humans , Mice , Models, Biological , Neoplasm Metastasis , Protein Binding , Protein Transport , RNA, Small Interfering/genetics
2.
Oncogene ; 36(24): 3397-3405, 2017 06 15.
Article in English | MEDLINE | ID: mdl-27819675

ABSTRACT

Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78. In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear ß-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear ß-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of ß-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Colonic Neoplasms/genetics , Epithelial Cells/cytology , Heat-Shock Proteins/genetics , Stem Cells/cytology , Animals , Cell Differentiation , Cell Proliferation , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Epithelial Cells/metabolism , Gene Deletion , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Transgenic , Mutation , Stem Cells/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...