Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurology ; 102(12): e209428, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38843489

ABSTRACT

BACKGROUND AND OBJECTIVES: Current practice in clinical neurophysiology is limited to short recordings with conventional EEG (days) that fail to capture a range of brain (dys)functions at longer timescales (months). The future ability to optimally manage chronic brain disorders, such as epilepsy, hinges upon finding methods to monitor electrical brain activity in daily life. We developed a device for full-head subscalp EEG (Epios) and tested here the feasibility to safely insert the electrode leads beneath the scalp by a minimally invasive technique (primary outcome). As secondary outcome, we verified the noninferiority of subscalp EEG in measuring physiologic brain oscillations and pathologic discharges compared with scalp EEG, the established standard of care. METHODS: Eight participants with pharmacoresistant epilepsy undergoing intracranial EEG received in the same surgery subscalp electrodes tunneled between the scalp and the skull with custom-made tools. Postoperative safety was monitored on an inpatient ward for up to 9 days. Sleep-wake, ictal, and interictal EEG signals from subscalp, scalp, and intracranial electrodes were compared quantitatively using windowed multitaper transforms and spectral coherence. Noninferiority was tested for pairs of neighboring subscalp and scalp electrodes with a Bland-Altman analysis for measurement bias and calculation of the interclass correlation coefficient (ICC). RESULTS: As primary outcome, up to 28 subscalp electrodes could be safely placed over the entire head through 1-cm scalp incisions in a ∼1-hour procedure. Five of 10 observed perioperative adverse events were linked to the investigational procedure, but none were serious, and all resolved. As a secondary outcome, subscalp electrodes advantageously recorded EEG percutaneously without requiring any maintenance and were noninferior to scalp electrodes for measuring (1) variably strong, stage-specific brain oscillations (alpha in wake, delta, sigma, and beta in sleep) and (2) interictal spikes peak-potentials and ictal signals coherent with seizure propagation in different brain regions (ICC >0.8 and absence of bias). DISCUSSION: Recording full-head subscalp EEG for localization and monitoring purposes is feasible up to 9 days in humans using minimally invasive techniques and noninferior to the current standard of care. A longer prospective ambulatory study of the full system will be necessary to establish the safety and utility of this innovative approach. TRIAL REGISTRATION INFORMATION: clinicaltrials.gov/study/NCT04796597.


Subject(s)
Electrodes, Implanted , Electroencephalography , Feasibility Studies , Humans , Male , Female , Adult , Electroencephalography/methods , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/physiopathology , Young Adult , Middle Aged , Minimally Invasive Surgical Procedures/methods , Minimally Invasive Surgical Procedures/instrumentation , Scalp , Brain/surgery , Brain/physiopathology
2.
J Neurosci ; 43(20): 3696-3707, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37045604

ABSTRACT

During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are thought to facilitate processing of external stimuli at multiple stages. However, direct links between timescales at rest and sensory processing, as well as translation to the auditory system are lacking. Here, we measured intracranial EEG in 11 human patients with epilepsy (4 women), while listening to pure tones. We show that, in the auditory network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic timescales at baseline can explain the latency of auditory responses: as intrinsic timescales increase, so do the single-electrode response onset and peak latencies. Our results suggest that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which manifest in cortical gradients with millimeter resolution and may provide a variety of temporal windows to support auditory processing.SIGNIFICANCE STATEMENT Endogenous neural dynamics are often characterized by their intrinsic timescales. These are thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing at rest and sensory processing is missing. Here, with intracranial EEG, we show that intrinsic timescales progressively increase from temporal to entorhinal cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability in the timing of intracranial EEG responses to sounds: cortical electrodes with fast timescales also show fast- and short-lasting responses to auditory stimuli, which progressively increase in the hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the temporal lobe manifests across cortical and limbic structures and can explain the temporal richness of auditory responses.


Subject(s)
Auditory Cortex , Temporal Lobe , Humans , Female , Temporal Lobe/physiology , Auditory Perception/physiology , Amygdala/physiology , Hippocampus/physiology , Electrocorticography , Auditory Cortex/physiology , Acoustic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...