Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(4): 040602, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38335353

ABSTRACT

We demonstrate a novel experimental tool set that enables irreversible multiqubit operations on a quantum platform. To exemplify our approach, we realize two elementary nonunitary operations: the or and nor gates. The electronic states of two trapped ^{40}Ca^{+} ions encode the logical information, and a cotrapped ^{88}Sr^{+} ion provides the irreversibility of the gate by a dissipation channel through sideband cooling. We measure 87% and 81% success rates for the or and nor gates, respectively. The presented methods are a stepping stone toward other nonunitary operations such as in quantum error correction and quantum machine learning.

2.
Rev Sci Instrum ; 87(11): 113103, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910317

ABSTRACT

We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with 40Ca+ and 88Sr+ ions. The instability of the laser manipulating the optical qubits in 40Ca+ is characterized by yielding a minimum of its Allan deviation of 2.4 ⋅ 10-15 at 0.33 s. To evaluate the performance of the apparatus, we trapped 40Ca+ ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.

3.
Struct Dyn ; 1(3): 034302, 2014 May.
Article in English | MEDLINE | ID: mdl-26798777

ABSTRACT

The study of structural dynamics of complex macromolecular crystals using electrons requires bunches of sufficient coherence and charge. We present diffraction patterns from graphite, obtained with bunches from an ultracold electron source, based on femtosecond near-threshold photoionization of a laser-cooled atomic gas. By varying the photoionization wavelength, we change the effective source temperature from 300 K to 10 K, resulting in a concomitant change in the width of the diffraction peaks, which is consistent with independently measured source parameters. This constitutes a direct measurement of the beam coherence of this ultracold source and confirms its suitability for protein crystal diffraction.

SELECTION OF CITATIONS
SEARCH DETAIL