Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nature ; 620(7975): 813-823, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37558877

ABSTRACT

Twenty-five years since foundational publications on valuing ecosystem services for human well-being1,2, addressing the global biodiversity crisis3 still implies confronting barriers to incorporating nature's diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever4. Notwithstanding agreements to incorporate nature's values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)5 and the UN Sustainable Development Goals6, predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature7. Arguably, a 'values crisis' underpins the intertwined crises of biodiversity loss and climate change8, pandemic emergence9 and socio-environmental injustices10. On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature's diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions7,11. Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures.


Subject(s)
Ecosystem , Environmental Justice , Environmental Policy , Goals , Sustainable Development , Humans , Biodiversity , Sustainable Development/economics , Environmental Policy/economics , Climate Change
2.
Nature ; 615(7950): 35-36, 2023 03.
Article in English | MEDLINE | ID: mdl-36859586

Subject(s)
Trees
3.
PLoS One ; 17(4): e0262375, 2022.
Article in English | MEDLINE | ID: mdl-35385481

ABSTRACT

In order to facilitate hydrological restoration, initiatives have been conducted to promote tree growth in degraded and rewetted peatlands in Indonesia. For these initiatives to be successful, tree seedlings need to be able to survive flooding episodes, with or without shade. We investigated the survival rates and the formation of adventitious roots in the case of four tree species exposed to combinations of different shading and water levels under controlled conditions in a nursery, with artificial rainwater and with peat soil as the medium. The research focused on the following questions (i) whether trees can grow on flooded peat soils; and (ii) which plant traits allow plants to cope with inundation, with or without shade. The four tree species compared (Shorea balangeran, Cratoxylum arborescens, Nephelium lappaceum and Durio zibethinus) include two natural pioneer and two farmer-preferred fruit trees. The experiment used a split-split plot design with 48 treatment combinations and at least 13 tree-level replicates. The study found that S. balangeran and C. arborescens had relatively high survival rates and tolerated saturated condition for 13 weeks, while N. lappaceum and D. zibethinus required non-saturated peat conditions. S. balangeran and C. arborescens developed adventitious roots to adapt to the inundated conditions. D. zibethinus, S. balangeran and N. lappaceum grew best under moderate (30%) shading levels, while C. arborescent grew best in full sunlight.


Subject(s)
Floods , Trees , Plant Roots , Plants , Seedlings , Soil
5.
PLoS One ; 14(1): e0211221, 2019.
Article in English | MEDLINE | ID: mdl-30703106

ABSTRACT

Interpreting discourses among implementers of what is termed a "landscape approach" enables us to learn from their experience to improve conservation and development outcomes. We use Q-methodology to explore the perspectives of a group of experts in the landscape approach, both from academic and implementation fields, on what hinderances are in place to the realisation of achieving sustainable landscape management in Indonesia. The results show that, at a generic level, "corruption" and "lack of transparency and accountability" rank as the greatest constraints on landscape functionality. Biophysical factors, such as topography and climate change, rank as the least constraining factors. When participants considered a landscape with which they were most familiar, the results changed: the rapid change of regulations, limited local human capacity and inaccessible data on economic risks increased, while the inadequacy of democratic institutions, "overlapping laws" and "corruption" decreased. The difference indicates some fine-tuning of generic perceptions to the local context and may also reflect different views on what is achievable for landscape approach practitioners. Overall, approximately 55% of variance is accounted for by five discourse factors for each trial. Four overlapped and two discourses were discrete enough to merit different discourse labels. We labelled the discourses (1) social exclusionists, (2) state view, (3) community view, (4) integrationists, (5) democrats, and (6) neoliberals. Each discourse contains elements actionable at the landscape scale, as well as exogenous issues that originate at national and global scales. Actionable elements that could contribute to improving governance included trust building, clarified resource rights and responsibilities, and inclusive representation in management. The landscape sustainability discourses studied here suggests that landscape approach "learners" must focus on ways to remedy poor governance if they are to achieve sustainability and multi-functionality.


Subject(s)
Conservation of Natural Resources/methods , Climate Change , Government , Humans , Indonesia
6.
J Environ Manage ; 236: 163-181, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30731241

ABSTRACT

Browsing of forest frontiers by cattle in sub-tropical landscapes is detrimental to ecosystem health, but essential to smallholder livelihoods. We described a silvopastoral landscape, searching for browsed plants to assess how much of the forest is actually used for this end, and also searching for potential new useful species for silvopastoral purposes. The first objective was accomplished through a floristic description, making observations of individuals with browsing marks. Information from interviews, bromatological analyses and vegetative propagation tests further complemented this information to achieve the second objective. We classified the results using Fuzzy Inference Systems (FISs). A great variety of nutritious browsed plants was found, distributed across various types of vegetation, growth habits and taxonomic groups: forest frontiers already are like silvopastoral systems. Various plants like Acalypha leptopoda, Montanoa tomentosa and Verbesina perymenioides are interesting prospects for further intensification of silvopastoral systems.


Subject(s)
Ecosystem , Forests , Animals , Biodiversity , Cattle , Reproduction , Trees
7.
Mitig Adapt Strateg Glob Chang ; 24(1): 147-163, 2019.
Article in English | MEDLINE | ID: mdl-30662320

ABSTRACT

Most attention in quantifying carbon dioxide (CO2) emissions from tropical peatlands has been on large-scale plantations (industrial timber, oil palm (Elaeis guinensis)), differing in drainage and land-use practices from those of smallholder farms. We measured subsidence and changes in bulk density and carbon organic content to calculate CO2 emissions over 2.5 years in a remnant logged-over forest and four dominant smallholder land-use types in Tanjung Jabung Barat District, Jambi Province, Sumatra, Indonesia: (1) simple rubber (Hevea brasiliensis) agroforest (> 30 years), (2) mixed coconut (Cocos nucifera) and coffee gardens (Coffea liberica) (> 40 years), (3) mixed betel nut (Areca catechu) and coffee gardens (> 20 years), and (4) oil palm plantation (1 year). We quantified changes in microtopography for each site for greater accuracy of subsidence estimates and tested the effects of nitrogen and phosphorus application. All sites had a fibric type of peat with depths of 50 to > 100 cm. A recently established oil palm had the highest rate of peat subsidence and emission (4.7 cm year-1 or 121 Mg CO2 ha-1 year-1) while the remnant forest had the lowest (1.8 cm year-1 or 40 Mg CO2 ha-1 year-1). Other land-use types subsided by 2-3 cm year-1, emitting 70-85 Mg CO2 ha-1 year-1. Fertilizer application did not have a consistent effect on inferred emissions. Additional emissions in the first years after drainage, despite groundwater tables of 40 cm, were of the order of belowground biomass of peat forest. Despite maintaining higher water tables, smallholder landscapes have CO2 emissions close to, but above, current IPCC defaults.

8.
Mitig Adapt Strateg Glob Chang ; 23(2): 211-229, 2018.
Article in English | MEDLINE | ID: mdl-30093830

ABSTRACT

The Indonesian government recently confirmed its Intended Nationally Determined Contributions (INDCs) to mitigate global climate change. A forest moratorium policy that protects forest and peatland is a significant part of the INDCs; however, its effectiveness is unclear in the face of complex land-use and land-cover change. This study aims to assess the dynamics of land-use change and ecosystem service supply as a function of local decision-making. We developed an agent-based model, Land-Use Change and Ecosystem Services (LUCES), and used it to explore the possible effects of the forest moratorium policy on the land-use decisions of private companies and communities. Our simulations for two districts in Central Kalimantan show that the current implementation of the forest moratorium policy is not effective in reducing forest conversion and carbon emissions. This is because companies continue to invest in converting secondary forest on mineral soils and the moratorium does not affect community decision-making. A policy that combines a forest moratorium with livelihood support and increases farm-gate prices of forest and agroforestry products could increase the local communities' benefits from conservation. Forest and agroforestry areas that are profitable and competitive are more likely to be conserved and reduce potential carbon emission by about 36 %. The results for the two districts, with different pressures on local resources, suggest that appropriate additional measures require local fine-tuning. The LUCES model could be an ex ante tool to facilitate such fine-tuning and help the Indonesian government achieve its INDC goals as part of a wider sustainable development policy.

9.
Glob Chang Biol ; 23(12): 5436-5454, 2017 12.
Article in English | MEDLINE | ID: mdl-28712116

ABSTRACT

Climate-related environmental and humanitarian crisis are important challenges in the Great Horn of Africa (GHA). In the absence of long-term past climate records in the region, tree-rings are valuable climate proxies, reflecting past climate variations and complementing climate records prior to the instrumental era. We established annually resolved multi-century tree-ring chronology from Juniperus procera trees in northern Ethiopia, the longest series yet for the GHA. The chronology correlates significantly with wet-season (r = .64, p < .01) and annual (r = .68, p < .01) regional rainfall. Reconstructed rainfall since A.D. 1811 revealed significant interannual variations between 2.2 and 3.8 year periodicity, with significant decadal and multidecadal variations during 1855-1900 and 1960-1990. The duration of negative and positive rainfall anomalies varied between 1-7 years and 1-8 years. Approximately 78.4% (95%) of reconstructed dry (extreme dry) and 85.4% (95%) of wet (extreme wet) events lasted for 1 year only and corresponded to historical records of famine and flooding, suggesting that future climate change studies should be both trend and extreme event focused. The average return periods for dry (extreme dry) and wet (extreme wet) events were 4.1 (8.8) years and 4.1 (9.5) years. Extreme-dry conditions during the 19th century were concurrent with drought episodes in equatorial eastern Africa that occurred at the end of the Little Ice Age. El Niño and La Niña events matched with 38.5% and 50% of extreme-dry and extreme-wet events. Equivalent matches for positive and negative Indian Ocean Dipole events were weaker, reaching 23.1 and 25%, respectively. Spatial correlations revealed that reconstructed rainfall represents wet-season rainfall variations over northern Ethiopia and large parts of the Sahel belt. The data presented are useful for backcasting climate and hydrological models and for developing regional strategic plans to manage scarce and contested water resources. Historical perspectives on long-term regional rainfall variability improve the interpretation of recent climate trends.


Subject(s)
Climate Change , Droughts , Juniperus/growth & development , Rivers , Trees/growth & development , Africa , Environmental Monitoring , Floods , Forecasting , Hydrology , Indian Ocean , Seasons
10.
Sci Rep ; 6: 29987, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27435095

ABSTRACT

Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.

11.
Proc Natl Acad Sci U S A ; 113(17): 4615-22, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-21844351

ABSTRACT

Previous research on the determinants of effectiveness in knowledge systems seeking to support sustainable development has highlighted the importance of "boundary work" through which research communities organize their relations with new science, other sources of knowledge, and the worlds of action and policymaking. A growing body of scholarship postulates specific attributes of boundary work that promote used and useful research. These propositions, however, are largely based on the experience of a few industrialized countries. We report here on an effort to evaluate their relevance for efforts to harness science in support of sustainability in the developing world. We carried out a multicountry comparative analysis of natural resource management programs conducted under the auspices of the Consultative Group on International Agricultural Research. We discovered six distinctive kinds of boundary work contributing to the successes of those programs-a greater variety than has been documented in previous studies. We argue that these different kinds of boundary work can be understood as a dual response to the different uses for which the results of specific research programs are intended, and the different sources of knowledge drawn on by those programs. We show that these distinctive kinds of boundary work require distinctive strategies to organize them effectively. Especially important are arrangements regarding participation of stakeholders, accountability in governance, and the use of "boundary objects." We conclude that improving the ability of research programs to produce useful knowledge for sustainable development will require both greater and differentiated support for multiple forms of boundary work.


Subject(s)
Agriculture , Conservation of Natural Resources , Natural Resources , Research , Decision Making , Humans , Negotiating
12.
Environ Manage ; 54(3): 420-32, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25047275

ABSTRACT

Currently, mitigation and adaptation measures are handled separately, due to differences in priorities for the measures and segregated planning and implementation policies at international and national levels. There is a growing argument that synergistic approaches to adaptation and mitigation could bring substantial benefits at multiple scales in the land use sector. Nonetheless, efforts to implement synergies between adaptation and mitigation measures are rare due to the weak conceptual framing of the approach and constraining policy issues. In this paper, we explore the attributes of synergy and the necessary enabling conditions and discuss, as an example, experience with the Ngitili system in Tanzania that serves both adaptation and mitigation functions. An in-depth look into the current practices suggests that more emphasis is laid on complementarity-i.e., mitigation projects providing adaptation co-benefits and vice versa rather than on synergy. Unlike complementarity, synergy should emphasize functionally sustainable landscape systems in which adaptation and mitigation are optimized as part of multiple functions. We argue that the current practice of seeking co-benefits (complementarity) is a necessary but insufficient step toward addressing synergy. Moving forward from complementarity will require a paradigm shift from current compartmentalization between mitigation and adaptation to systems thinking at landscape scale. However, enabling policy, institutional, and investment conditions need to be developed at global, national, and local levels to achieve synergistic goals.


Subject(s)
Climate Change , Environment , Ecosystem , Humans , Public Policy , Tanzania
13.
Proc Natl Acad Sci U S A ; 108(46): 18612-7, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22065751

ABSTRACT

In a tsunami event human casualties and infrastructure damage are determined predominantly by seaquake intensity and offshore properties. On land, wave energy is attenuated by gravitation (elevation) and friction (land cover). Tree belts have been promoted as "bioshields" against wave impact. However, given the lack of quantitative evidence of their performance in such extreme events, tree belts have been criticized for creating a false sense of security. This study used 180 transects perpendicular to over 100 km on the west coast of Aceh, Indonesia to analyze the influence of coastal vegetation, particularly cultivated trees, on the impact of the 2004 tsunami. Satellite imagery; land cover maps; land use characteristics; stem diameter, height, and planting density; and a literature review were used to develop a land cover roughness coefficient accounting for the resistance offered by different land uses to the wave advance. Applying a spatial generalized linear mixed model, we found that while distance to coast was the dominant determinant of impact (casualties and infrastructure damage), the existing coastal vegetation in front of settlements also significantly reduced casualties by an average of 5%. In contrast, dense vegetation behind villages endangered human lives and increased structural damage. Debris carried by the backwash may have contributed to these dissimilar effects of land cover. For sustainable and effective coastal risk management, location of settlements is essential, while the protective potential of coastal vegetation, as determined by its spatial arrangement, should be regarded as an important livelihood provider rather than just as a bioshield.


Subject(s)
Ecosystem , Environmental Monitoring/methods , Tsunamis , Disasters , Floods , Geography , Indian Ocean , Indonesia , Models, Statistical , Plants , Trees , Water Movements
14.
Tree Physiol ; 26(12): 1529-35, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17169892

ABSTRACT

Trees in cropped fields may improve nitrogen (N) use efficiency by intercepting leached N, but crop yield will be reduced if the trees compete strongly with crops for N. Ideal trees for intercropping will take up N from deeper soil layers not accessed by the crop species. Spatiotemporal aspects of tree nitrogen capture niches were investigated within a hedgerow intercropping system by placing 15N at three depths and monitoring 15N uptake by trees pruned either 25 or 4 days before application of 15N. Trees with contrasting rooting patterns (Gliricidia sepium L. and Peltophorum dasyrrachis (Miq.) Kurz) were grown in mixed hedgerows and intercropped with maize (Zea mays L.). Neither species showed significant N uptake during the 5-14 days after pruning, even though some shoot regrowth occurred during this time. Mean topsoil (0-5 cm depth) root length density of G. sepium was 520% greater than that of P. dasyrrachis, whereas total root length (0-100 cm depth) of G. sepium was only 450% greater. On average, G. sepium recovered 15 times as much 15N as P. dasyrrachis, following application of 15N at 5 cm depth, but the two species recovered a similar amount following application at 80 cm depth, suggesting that P. dasyrrachis had better niche complementarity with shallow rooting crops. However, both species showed strong plasticity in vertical N uptake pattern in response to competition from establishing maize plants. The species differed in their response: N uptake activity by G. sepium shifted down the soil profile in response to increasing competition from a growing maize crop (uptake from 80 cm depth changed from 4 to 9% of uptake from 5 cm depth), whereas N uptake by P. dasyrrachis became relatively shallow (uptake from 80 cm depth changed from 305 to 25% of uptake from 5 cm depth). Niche avoidance and increased competitiveness within the topsoil represent alternative responses to competition. The response displayed may be related to soil fertility in the species' natural habitats.


Subject(s)
Adaptation, Physiological , Fabaceae/metabolism , Nitrogen/metabolism , Plant Roots/metabolism , Trees/metabolism , Ecosystem , Fabaceae/physiology , Nitrogen Isotopes , Plant Roots/growth & development , Soil/analysis , Time Factors , Trees/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...