Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 143(1): 79-91, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37801721

ABSTRACT

ABSTRACT: Transfusion-related acute lung injury (TRALI) is one of the leading causes of transfusion-related fatalities and, to date, is without available therapies. Here, we investigated the role of the complement system in TRALI. Murine anti-major histocompatibility complex class I antibodies were used in TRALI mouse models, in combination with analyses of plasma samples from patients with TRALI. We found that in vitro complement activation was related to in vivo antibody-mediated TRALI induction, which was correlated with increased macrophage trafficking from the lungs to the blood in a fragment crystallizable region (Fc)-dependent manner and that this was dependent on C5. Human immunoglobulin G 1 variants of the murine TRALI-inducing antibody 34-1-2S, either unable to activate complement and/or bind to Fcγ receptors (FcγRs), revealed an essential role for the complement system, but not for FcγRs, in the onset of 34-1-2S-mediated TRALI in mice. In addition, we found high levels of complement activation in the plasma of patients with TRALI (n = 53), which correlated with elevated neutrophil extracellular trap (NET) markers. In vitro we found that NETs could be formed in a murine, 2-hit model, mimicking TRALI with lipopolysaccharide and C5a stimulation. Collectively, this reveals a critical role of Fc-mediated complement activation in TRALI, with a direct relation to macrophage trafficking from the lungs to the blood and an association with NET formation, suggesting that targeting the complement system may be an attractive therapeutic approach for combating TRALI.


Subject(s)
Extracellular Traps , Transfusion-Related Acute Lung Injury , Humans , Mice , Animals , Lung , Antibodies , Macrophages , Complement Activation , Complement System Proteins
2.
Platelets ; 34(1): 2129604, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36185007

ABSTRACT

Immune-mediated platelet refractoriness (PR) remains a significant problem in the setting of platelet transfusion and is predominantly caused by the presence of alloantibodies directed against class I human leukocyte antigens (HLA). Opsonization of donor platelets with these alloantibodies can result in rapid clearance after transfusion via multiple mechanisms, including antibody dependent cellular phagocytosis (ADCP). Interestingly, not all alloimmunized patients develop PR to unmatched platelet transfusions, suggesting variation in HLA-specific IgG responses between patients. Previously, we observed that the glycosylation profile of anti-HLA antibodies was highly variable between PR patients, especially with respect to Fc galactosylation, sialylation and fucosylation. In the current study, we investigated the effect of different Fc glycosylation patterns, with known effects on complement deposition and FcγR binding, on phagocytosis of opsonized platelets by monocyte-derived human macrophages. We found that the phagocytosis of antibody- and complement-opsonized platelets, by monocyte derived M1 macrophages, was unaffected by these qualitative IgG-glycan differences.


Subject(s)
Isoantibodies , Platelet Transfusion , Humans , Blood Platelets/metabolism , Phagocytosis , Macrophages , Immunoglobulin G , Complement System Proteins/metabolism , HLA Antigens
3.
Front Immunol ; 14: 1304365, 2023.
Article in English | MEDLINE | ID: mdl-38259472

ABSTRACT

Immunoglobulin G (IgG) antibodies are a critical component of the adaptive immune system, binding to and neutralizing pathogens and other foreign substances. Recent advances in molecular antibody biology and structural protein engineering enabled the modification of IgG antibodies to enhance their therapeutic potential. This review summarizes recent progress in both natural and engineered structural modifications of IgG antibodies, including allotypic variation, glycosylation, Fc engineering, and Fc gamma receptor binding optimization. We discuss the functional consequences of these modifications to highlight their potential for therapeutical applications.


Subject(s)
Immunoglobulin G , Receptors, IgG , Gamma Rays , Glycosylation , Molecular Biology
4.
J Thromb Haemost ; 20(12): 3011-3025, 2022 12.
Article in English | MEDLINE | ID: mdl-36165642

ABSTRACT

BACKGROUND: The formation of alloantibodies directed against class I human leukocyte antigens (HLA) continues to be a clinically challenging complication after platelet transfusions, which can lead to platelet refractoriness (PR) and occurs in approximately 5%-15% of patients with chronic platelet support. Interestingly, anti-HLA IgG levels in alloimmunized patients do not seem to predict PR, suggesting functional or qualitative differences among anti-HLA IgG. The binding of these alloantibodies to donor platelets can result in rapid clearance after transfusion, presumably via FcγR-mediated phagocytosis and/or complement activation, which both are affected by the IgG-Fc glycosylation. OBJECTIVES: To characterize the Fc glycosylation profile of anti-HLA class I antibodies formed after platelet transfusion and to investigate its effect on clinical outcome. PATIENTS/METHODS: We screened and captured anti-HLA class I antibodies (anti-HLA A2, anti-HLA A24, and anti-HLA B7) developed after platelet transfusions in hemato-oncology patients, who were included in the PREPAReS Trial. Using liquid chromatography-mass spectrometry, we analyzed the glycosylation profiles of total and anti-HLA IgG1 developed over time. Subsequently, the glycosylation data was linked to the patients' clinical information and posttransfusion increments. RESULTS: The glycosylation profile of anti-HLA antibodies was highly variable between patients. In general, Fc galactosylation and sialylation levels were elevated compared to total plasma IgG, which correlated negatively with the platelet count increment. Furthermore, high levels of afucosylation were observed for two patients. CONCLUSIONS: These differences in composition of anti-HLA Fc-glycosylation profiles could potentially explain the variation in clinical severity between patients.


Subject(s)
Isoantibodies , Neoplasms , Humans , Platelet Transfusion , Glycosylation , Blood Platelets/metabolism , Immunoglobulin G
5.
Haematologica ; 107(10): 2432-2444, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35354253

ABSTRACT

Approximately 20% of patients receiving multiple platelet transfusions develop platelet alloantibodies, which can be directed against human leukocyte antigens (HLA) and, to a lesser extent, against human platelet antigens (HPA). These antibodies can lead to the rapid clearance of donor platelets, presumably through IgG-Fc receptor (FcγR)-mediated phagocytosis or via complement activation, resulting in platelet refractoriness. Strikingly, not all patients with anti-HLA or -HPA antibodies develop platelet refractoriness upon unmatched platelet transfusions. Previously, we found that IgG Fc glycosylation of anti-HLA antibodies was highly variable between patients with platelet refractoriness, especially with respect to galactosylation and sialylation of the Fc-bound sugar moiety. Here, we produced recombinant glycoengineered anti-HLA and anti- HPA-1a monoclonal antibodies with varying Fc galactosylation and sialylation levels and studied their ability to activate the classical complement pathway. We observed that anti-HLA monoclonal antibodies with different specificities, binding simultaneously to the same HLA-molecules, or anti-HLA in combination with anti-HPA-1a monoclonal antibodies interacted synergistically with C1q, the first component of the classical pathway. Elevated Fc galactosylation and, to a lesser extent, sialylation significantly increased the complement-activating properties of anti-HLA and anti-HPA-1a monoclonal antibodies. We propose that both the breadth of the polyclonal immune response, with recognition of different HLA epitopes and in some cases HPA antigens, and the type of Fc glycosylation can provide an optimal stoichiometry for C1q binding and subsequent complement activation. These factors can shift the effect of a platelet alloimmune response to a clinically relevant response, leading to complement-mediated clearance of donor platelets, as observed in platelet refractoriness.


Subject(s)
Antigens, Human Platelet , Thrombocytopenia , Antibodies, Monoclonal/pharmacology , Antigens, Human Platelet/metabolism , Blood Platelets/metabolism , Complement C1q , Complement Pathway, Classical , Complement System Proteins/metabolism , Epitopes , HLA Antigens , Humans , Immunoglobulin G/metabolism , Isoantibodies , Receptors, IgG/metabolism , Sugars/metabolism , Thrombocytopenia/metabolism
6.
J Immunol ; 207(6): 1545-1554, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34408013

ABSTRACT

Human IgG contains one evolutionarily conserved N-linked glycan in its Fc region at position 297. This glycan is crucial for Fc-mediated functions, including its induction of the classical complement cascade. This is induced after target recognition through the IgG-Fab regions, allowing neighboring IgG-Fc tails to associate through Fc:Fc interaction, ultimately leading to hexamer formation. This hexamerization seems crucial for IgG to enable efficient interaction with the globular heads of the first complement component C1q and subsequent complement activation. In this study, we show that galactose incorporated in the IgG1-Fc enhances C1q binding, C4, C3 deposition, and complement-dependent cellular cytotoxicity in human erythrocytes and Raji cells. IgG1-Fc sialylation slightly enhanced binding of C1q, but had little effect on downstream complement activation. Using various mutations that decrease or increase hexamerization capacity of IgG1, we show that IgG1-Fc galactosylation has no intrinsic effect on C1q binding to IgG1, but enhances IgG1 hexamerization potential and, thereby, complement activation. These data suggest that the therapeutic potential of Abs can be amplified without introducing immunogenic mutations, by relatively simple glycoengineering.


Subject(s)
Complement Activation , Immunoglobulin G , Complement C1q , Humans , Immunoglobulin G/genetics , Mutation
7.
Blood Adv ; 4(16): 3875-3885, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32810222

ABSTRACT

Transfusion-related acute lung injury (TRALI) remains a leading cause of transfusion-related deaths. In most cases, anti-leukocyte antibodies in the transfusion product trigger TRALI, but not all anti-leukocyte antibodies cause TRALI. It has been shown that the anti-major histocompatibility complex (MHC) class I antibody 34-1-2S (anti-H-2Kd) causes TRALI in BALB/c mice (MHC class I haplotype H-2Kd), whereas SF1.1.10 (anti-H-2Kd) does not. In C57BL/6 mice (MHC class I haplotype H-2Kb), TRALI only occurs when anti-MHC class I antibody AF6-88.5.5.3 (anti-H-2Kb) is administered together with a high dose of 34-1-2S. It remains unknown which specific antibody characteristics are responsible for eliciting TRALI. We therefore investigated several biological and structural features of 34-1-2S compared with other anti-MHC class I antibodies, which on their own do not cause TRALI: SF1.1.10 and AF6-88.5.5.3. No substantial differences were observed between the TRALI-causing 34-1-2S and the TRALI-resistant SF1.1.10 regarding binding affinity to H-2Kd. Regarding binding affinity to H-2Kb, only AF6-88.5.5.3 potently bound to H-2Kb, whereas 34-1-2S exhibited weak but significant cross-reactivity. Furthermore, the binding affinity to FcγRs as well as the Fc glycan composition seemed to be similar for all antibodies. Similar Fc glycosylation profiles were also observed for human TRALI-causing donor anti-HLA antibodies compared with human anti-HLA antibodies from control donors. 34-1-2S, however, displayed superior complement activation capacity, which was fully Fc dependent and not significantly dependent on Fc glycosylation. We conclude that TRALI induction is not correlated with Fab- and Fc-binding affinities for antigen and FcγRs, respectively, nor with the composition of Fc glycans; but increased Fc-mediated complement activation is correlated with TRALI induction.


Subject(s)
Transfusion Reaction , Transfusion-Related Acute Lung Injury , Animals , Complement Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
8.
Nutrients ; 10(10)2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30262772

ABSTRACT

Innate immune memory, also termed "trained immunity" in vertebrates, has been recently described in a large variety of plants and animals. In most cases, trained innate immunity is induced by pathogens or pathogen-associated molecular patterns (PAMPs), and is associated with long-term epigenetic, metabolic, and functional reprogramming. Interestingly, recent findings indicate that food components can mimic PAMPs effects and induce trained immunity. The aim of this study was to investigate whether bovine milk or its components can induce trained immunity in human monocytes. To this aim, monocytes were exposed for 24 h to ß-glucan, Toll-like receptor (TLR)-ligands, bovine milk, milk fractions, bovine lactoferrin (bLF), and bovine Immunoglobulin G (bIgG). After washing away the stimulus and a resting period of five days, the cells were re-stimulated with TLR ligands and Tumor necrosis factor (TNF-) and interleukin (IL)-6 production was measured. Training with ß-glucan resulted in higher cytokine production after TLR1/2, TLR4, and TLR7/8 stimulation. When monocytes trained with raw milk were re-stimulated with TLR1/2 ligand Pam3CSK4, trained cells produced more IL-6 compared to non-trained cells. Training with bIgG resulted in higher cytokine production after TLR4 and TLR7/8 stimulation. These results show that bovine milk and bIgG can induce trained immunity in human monocytes. This confirms the hypothesis that diet components can influence the long-term responsiveness of the innate immune system.


Subject(s)
Immunity, Innate , Immunoglobulin G/administration & dosage , Milk/immunology , Monocytes/immunology , Animals , Cattle , Humans , Interleukin-6/biosynthesis , Lactoferrin/administration & dosage , Leukocytes, Mononuclear/immunology , Ligands , Lipopeptides/administration & dosage , Toll-Like Receptors/administration & dosage , Tumor Necrosis Factor-alpha/biosynthesis , beta-Glucans/administration & dosage
9.
Eur J Immunol ; 48(2): 283-292, 2018 02.
Article in English | MEDLINE | ID: mdl-28921509

ABSTRACT

Class-switching of B cells to IgA can be induced via both T-cell-dependent and T-cell-independent mechanisms. IgA is most predominantly produced mucosally and is important for combating infections and allergies. In contrast to mice, humans have two forms of IgA; IgA1 and IgA2 with diverse tissue distribution. In early life, IgA levels might be sub-optimal especially during the fall season when bacterial and viral infections are more common. Therefore, we investigated using human B cells whether T-cell-independent factors -promoting cell survival, class switching and immunoglobulin secretion- BAFF, APRIL, IL-10 and retinoic acid can boost IgA production in the context of viral or bacterial infection. To this end total and naive peripheral blood B cells were stimulated with these factors for 6 days in the presence or absence of TLR7/8 agonist R848 (mimicking viral infection) or TLR9 agonist CpG-ODN (mimicking bacterial infection). We show that BAFF significantly augments IgA2 production in TLR7/8 stimulated mature, but not naïve B cells. In addition, BAFF augments IL-10 production and viability in TLR7/8 and TLR9 stimulated mature B cells. These data warrant further investigation of its role in immune regulation both in the periphery and mucosal tissues in early life or during disease.


Subject(s)
B-Cell Activating Factor/metabolism , B-Lymphocytes/physiology , Blood Cells/immunology , Hypersensitivity/immunology , Infections/immunology , Mucous Membrane/immunology , T-Lymphocytes/immunology , Animals , B-Cell Activating Factor/genetics , Cells, Cultured , Humans , Imidazoles/pharmacology , Immunoglobulin A/metabolism , Immunoglobulin Class Switching , Interleukin-10/metabolism , Lymphocyte Activation , Mice , Oligodeoxyribonucleotides/pharmacology , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...