Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Int J Food Microbiol ; 411: 110509, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38101188

ABSTRACT

Microbial multispecies communities consisting of background microbiota and Listeria monocytogenes could be established on materials used in food processing environments. The presence, abundance and diversity of the strains within these microbial multispecies communities may be affected by mutual interactions and differences in resistance towards regular cleaning and disinfection (C&D) procedures. Therefore, this study aimed to characterize the growth and diversity of a L. monocytogenes strain cocktail (n = 6) during biofilm formation on polyvinyl chloride (PVC) and stainless steel (SS) without and with the presence of a diverse set of background microbiota (n = 18). L. monocytogenes and background microbiota strains were isolated from mushroom processing environments and experiments were conducted in simulated mushroom processing environmental conditions using mushroom extract as growth medium and ambient temperature (20 °C) as culturing temperature. The L. monocytogenes strains applied during monospecies biofilm incubation formed biofilms on both PVC and SS coupons, and four cycles of C&D treatment were applied with a chlorinated alkaline cleaning agent and a disinfection agent based on peracetic acid and hydrogen peroxide. After each C&D treatment, the coupons were re-incubated for two days during an incubation period for 8 days in total, and C&D resulted in effective removal of biofilms from SS (reduction of 4.5 log CFU/cm2 or less, resulting in counts below detection limit of 1.5 log CFU/cm2 after every C&D treatment), while C&D treatments on biofilms formed on PVC resulted in limited reductions (reductions between 1.2 and 2.4 log CFU/cm2, which equals a reduction of 93.7 % and 99.6 %, respectively). Incubation of the L. monocytogenes strains with the microbiota during multispecies biofilm incubation led to the establishment of L. monocytogenes in the biofilm after 48 h incubation with corresponding high L. monocytogenes strain diversity in the multispecies biofilm on SS and PVC. C&D treatments removed L. monocytogenes from multispecies biofilm communities on SS (reduction of 3.5 log CFU/cm2 or less, resulting in counts below detection limit of 1.5 log CFU/cm2 after every C&D treatment), with varying dominance of microbiota species during different C&D cycles. However, C&D treatments of multispecies biofilm on PVC resulted in lower reductions of L. monocytogenes (between 0.2 and 2.4 log CFU/cm2) compared to single species biofilm, and subsequent regrowth of L. monocytogenes and stable dominance of Enterobacteriaceae and Pseudomonas. In addition, planktonic cultures of L. monocytogenes were deposited and desiccated on dry surfaces without and with the presence of planktonic background microbiota cultures. The observed decline of desiccated cell counts over time was faster on SS compared to PVC. However, the application of C&D resulted in counts below the detection limit of 1.7 log CFU/coupon on both surfaces (reduction of 5.9 log CFU/coupon or less). This study shows that L. monocytogenes is able to form single and multispecies biofilms on PVC with high strain diversity following C&D treatments. This highlights the need to apply more stringent C&D regime treatments for especially PVC and similar surfaces to efficiently remove biofilm cells from food processing surfaces.


Subject(s)
Agaricales , Listeria monocytogenes , Microbiota , Disinfection , Desiccation , Biofilms , Stainless Steel/analysis , Colony Count, Microbial , Food Microbiology
2.
Microbiol Mol Biol Rev ; 87(3): e0021222, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37367231

ABSTRACT

Microbiomes have highly important roles for ecosystem functioning and carry out key functions that support planetary health, including nutrient cycling, climate regulation, and water filtration. Microbiomes are also intimately associated with complex multicellular organisms such as humans, other animals, plants, and insects and perform crucial roles for the health of their hosts. Although we are starting to understand that microbiomes in different systems are interconnected, there is still a poor understanding of microbiome transfer and connectivity. In this review we show how microbiomes are connected within and transferred between different habitats and discuss the functional consequences of these connections. Microbiome transfer occurs between and within abiotic (e.g., air, soil, and water) and biotic environments, and can either be mediated through different vectors (e.g., insects or food) or direct interactions. Such transfer processes may also include the transmission of pathogens or antibiotic resistance genes. However, here, we highlight the fact that microbiome transmission can have positive effects on planetary and human health, where transmitted microorganisms potentially providing novel functions may be important for the adaptation of ecosystems.


Subject(s)
Microbiota , Planets , Animals , Humans , Soil Microbiology , Microbiota/physiology , Soil , Water
3.
Food Res Int ; 165: 112488, 2023 03.
Article in English | MEDLINE | ID: mdl-36869500

ABSTRACT

Foods and food production environments can be contaminated with Listeria monocytogenes and may support growth of this foodborne pathogen. This study aims to characterize the growth and biofilm formation of sixteen L. monocytogenes strains, isolated from mushroom production and processing environments, in filter-sterilized mushroom medium. Strain performance was compared to twelve L. monocytogenes strains isolated from other sources including food and human isolates. All twenty-eight L. monocytogenes strains showed rather similar growth performance at 20 °C in mushroom medium, and also significant biofilm formation was observed for all strains. HPLC analysis revealed the presence of mannitol, trehalose, glucose, fructose and glycerol, that were all metabolized by L. monocytogenes, except mannitol, in line with the inability of L. monocytogenes to metabolize this carbohydrate. Additionally, the growing behavior of L. monocytogenes was tested on whole, sliced and smashed mushroom products to quantify performance in the presence of product-associated microbiota. A significant increase of L. monocytogenes was observed with higher increase of counts when the mushroom products were more damaged, even with the presence of high background microbiota counts. This study demonstrated that L. monocytogenes grows well in mushroom products, even when the background microbiota is high, highlighting the importance to control (re)contamination of mushrooms.


Subject(s)
Agaricus , Listeria monocytogenes , Humans , Mannitol , Biofilms
4.
Food Microbiol ; 112: 104235, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36906306

ABSTRACT

Bacillus thuringiensis (Bt) is commonly used as a biological control agent (BCA) to control insect pests in edible plant production and can as such be introduced into the food chain of fresh produce. Using standard food diagnostics Bt will be detected and reported as presumptive B. cereus. Tomato plants are often sprayed with Bt biopesticides for insect control, thus these Bt BCAs can also reach the tomato fruits and persist until consumption. In this study, vine tomatoes from the retail in Belgium (Flanders) were investigated for the occurrence and residual numbers of presumptive B. cereus and Bt. Of 109 tomato samples, 61 (56%) were tested positive for presumptive B. cereus. Of the presumptive B. cereus isolates (n = 213) recovered from these samples, 98% were identified as Bt by the production of parasporal crystals. Further quantitative real-time PCR assays on a subselection of Bt isolates (n = 61) showed that 95% of Bt isolates were indistinguishable from Bt biopesticide strains that are approved to be used on crops in the EU. Furthermore, the attachment strength of tested Bt biopesticide strains showed easier wash-off properties if using the commercial Bt granule formulation than the unformulated lab-cultured Bt or B. cereus spore suspensions.


Subject(s)
Bacillus thuringiensis , Solanum lycopersicum , Animals , Biological Control Agents , Prevalence , Insecta , Bacillus cereus , Bacterial Proteins
5.
Int J Food Microbiol ; 395: 110183, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37001480

ABSTRACT

Interaction between Listeria monocytogenes and resident background microbiota may occur in food processing environments and may influence the survival of this pathogen in a factory environment. Therefore the aim of this study was to characterize the growth performance of microbiota isolated from the processing environments of frozen sliced mushrooms, and to investigate the competitive performance of L. monocytogenes when co-cultured with accompanying environmental microbiota. Acinetobacter, Enterobacteriaceae, Lactococcus and Pseudomonas were the most prominent background microbiota isolated from the processing environment of frozen sliced mushrooms. All individual microbiota strains were able to grow and form biofilm in filter-sterilized mushroom medium, with the mannitol-consumers Raoultella and Ewingella as top performers, reaching up to 9.6 and 9.8 log CFU/mL after 48 h incubation at room temperature. When L. monocytogenes mushroom isolates were co-cultured with the microbiota strains, L. monocytogenes counts ranged from 7.6 to 8.9 log CFU/mL after 24 h of incubation, while counts of the microbiota strains ranged from 5.5 to 9.0 log CFU/mL. Prolonged incubation up to 48 h resulted in further increase of L. monocytogenes counts when co-cultured with non-acidifying species Pseudomonas and Acinetobacter reaching 9.1 to 9.2 log CFU/mL, while a decrease of L. monocytogenes counts reaching 5.8 to 7.7 log CFU/mL was observed in co-culture with Enterobacteriaceae and acidifying Lactococcus representatives. In addition, L. monocytogenes grew also in spent mushroom media of the microbiota strains, except in acidified spent media of Lactococcus strains. These results highlight the competitive ability of L. monocytogenes during co-incubation with microbiota in fresh and in spent mushroom medium, indicative of its invasion and persistence capacity in food processing factory environments.


Subject(s)
Agaricales , Listeria monocytogenes , Microbiota , Food Microbiology , Food Handling , Pseudomonas , Enterobacteriaceae , Lactococcus , Colony Count, Microbial
6.
Front Microbiol ; 13: 1030921, 2022.
Article in English | MEDLINE | ID: mdl-36569082

ABSTRACT

Bacillus thuringiensis (Bt), used as a biological control agent (BCA), can persist on plants, and from there can be introduced into the final food product. In routine food safety diagnostics, these Bt residues cannot be distinguished from natural populations of Bacillus cereus present in plants and all are enumerated as "presumptive B. cereus." In this study, information on eventual use of Bt biopesticides, brand, application times and intervals provided by three food processing companies in Belgium, were integrated with quantitative data on presumptive B. cereus measured from fresh to frozen food products. This information together with data on genomic similarity obtained via whole genome sequencing (WGS) and cry gene profiling using a quantitative real-time PCR (qPCR) assay, confirmed that six out of 11 Bt isolates originated from the applied Bt biocontrol products. These identified Bt strains were shown to carry enterotoxin genes (nhe, hbl, cytK-2) and express Hbl enterotoxin in vitro. It was also noted that these Bt biopesticide strains showed no growth at standard refrigeration temperatures and a low or moderate biofilm-forming ability and cytotoxic activity. Our results also showed that the use of Bt as a BCA on spinach plants in the field led to higher residual counts of Bt in spinach (fresh or frozen) in the food supply chain, but the residual counts exceeding at present commonly assumed safety limit of 105 CFU/g was only found in one fresh spinach sample. It is therefore recommended to establish a pre-harvest interval for Bt biopesticide application in the field to lower the likelihood of noncompliance to the generic B. cereus safety limit. Furthermore, WGS was found to be the best way to identify Bt biopesticide isolates at the strain level for foodborne outbreaks and clinical surveillance. The developed qPCR assay for screening on the presence of cry genes in presumptive B. cereus can be applied as a rapid routine test as an amendment to the already existing test on Bt crystal proteins determined via phase-contrast microscopy.

7.
Microb Ecol ; 84(1): 267-284, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34436640

ABSTRACT

Bacteria are part of the insect gut system and influence many physiological traits of their host. Gut bacteria may even reduce or block the transmission of arboviruses in several species of arthropod vectors. Culicoides biting midges are important arboviral vectors of several livestock and wildlife diseases, yet limited information is available on their gut bacterial communities. Addressing this gap will help inform how these communities can be manipulated and ultimately used as novel tools to control pathogens. To assess how bacterial communities change during the life stages of lab-reared C. nubeculosus and C. sonorensis, endosymbiotic bacteria were identified using Illumina sequencing of 16S rRNA and taxonomically characterised. Analyses were conducted to determine how gut bacterial communities in adults are influenced by species identity and geographic distance among biting midge populations. Communities of the two lab-reared Culicoides species significantly changed after pupation and with maturation into 6-day-old adults. Pseudomonas, Burkholderiaceae and Leucobacter bacteria were part of a core community that was trans-stadially transmitted and found throughout their life cycle. Among field-collected biting midges, the bacterial communities were unique for almost each species. Cardinium, Rickettsia and Wolbachia were some of the most abundant bacteria in midges collected from wetlands. Only Pseudomonas was present in high relative abundance in all field-collected species. In this study, species identity, as well as geographic distance, influenced the gut bacterial communities and may partly explain known inter- and intra-species variability in vector competence. Additionally, stably associated bacterial species could be candidates for paratransgenic strategies to control vector-borne pathogens.


Subject(s)
Ceratopogonidae , Gastrointestinal Microbiome , Wolbachia , Animals , Insect Vectors/microbiology , RNA, Ribosomal, 16S/genetics , Wolbachia/genetics
8.
Curr Opin Biotechnol ; 73: 171-178, 2022 02.
Article in English | MEDLINE | ID: mdl-34479027

ABSTRACT

Microbiomes are all around us in natural and cultivated ecosystems, for example, soils, plants, animals and our own body. Microbiomes are essential players of biotechnological applications, and their functions drive human, animal, plant and environmental health. The rapidly developing microbiome research landscape was studied by a global mapping excercise and bibliometric analysis. Although microbiome research is performed in many different science fields, using similar concepts within and across fields, microbiomes are mostly investigated one ecosystem at-a-time. In order to fully understand microbiome impacts and leverage microbial functions, research needs to adopt a systems approach connecting microbiomes and research initiatives in divergent fields to create understanding on how microbiomes can be modulated for desirable functions as a basis of sustainable, circular bioeconomy.


Subject(s)
Microbiota , Animals , Plants , Soil , Soil Microbiology , Systems Analysis
9.
Microorganisms ; 9(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34835415

ABSTRACT

Pathogenic Escherichia coli strains are responsible for food-borne disease outbreaks upon consumption of fresh vegetables and fruits. The aim of this study was to establish the transmission route of E. coli strain 0611, as proxy for human pathogenic E. coli, via manure, soil and plant root zones to the above-soil plant compartments. The ecological behavior of the introduced strain was established by making use of a combination of cultivation-based and molecular targeted and untargeted approaches. Strain 0611 CFUs and specific molecular targets were detected in the root zones of lettuce and leek plants, even up to 272 days after planting in the case of leek plants. However, no strain 0611 colonies were detected in leek leaves, and only in one occasion a single colony was found in lettuce leaves. Therefore, it was concluded that transmission of E. coli via manure is not the principal contamination route to the edible parts of both plant species grown under field conditions in this study. Strain 0611 was shown to accumulate in root zones of both species and metagenomic reads of this strain were retrieved from the lettuce rhizosphere soil metagenome library at a level of Log 4.11 CFU per g dry soil.

10.
Int J Food Microbiol ; 360: 109438, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34715483

ABSTRACT

Listeria monocytogenes is a foodborne pathogen ubiquitously found in nature and which has been isolated from food and food processing environments. This study aimed to characterize L. monocytogenes strains isolated from the production and processing environments of frozen sliced mushrooms (Agaricus bisporus). An analysis was executed along the mushroom processing chain including one mushroom grower and two mushroom processing factories. A total of 153 L. monocytogenes strains were isolated, which could be grouped in three PCR serogroups, namely, serogroup 1/2a-3a (39.2%), serogroup 1/2b-3b-7 (34.0%) and serogroup 4b-4d-4e (26.8%). A selection of 44 L. monocytogenes strains isolated from the processing environment after cleaning and disinfection (C&D) and from frozen sliced mushrooms was genotyped by whole genome sequencing (WGS), because these strains pose a potential risk for product contamination after C&D and for human consumption. Multilocus sequence typing (MLST) revealed 11 clonal complexes (CCs), with strains belonging to CC1, CC4, CC37 and CC87 being detected in both processing factories. Comparative WGS analysis of the 44 strains showed the presence of Listeria pathogenicity island 1 (LIPI-1) with a disrupted version of actA in all CC1, CC4, CC5, CC59 strains, and all but one CC224 strains. Notably, both inlA and inlB were detected as full-length loci in every strain, except for inlA in a CC6 strain that harbored a three amino acid deletion. LIPI-3 was detected in all CC1, CC4, CC6 and CC224 strains, while LIPI-4 was detected in all CC4 and CC87 strains. In addition, antibiotic susceptibility tests showed susceptibility towards fourteen antibiotics tested. The bcrABC operon was found in one CC5 strain, that showed a higher tolerance towards benzalkonium chloride than any other strain tested with confluent growth till 12.5 µg/ml for the CC5 strain compared to 2.5 µg/ml for the other strains. This study highlights that the ecology of L. monocytogenes in the frozen sliced mushroom production chain is highly diverse, and shows the importance of hygienic measures to control L. monocytogenes along the frozen sliced mushroom production chain.


Subject(s)
Agaricus , Food Microbiology , Listeria monocytogenes , Genomics , Listeria monocytogenes/genetics , Multilocus Sequence Typing
13.
Microbiome ; 8(1): 103, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32605663

ABSTRACT

The field of microbiome research has evolved rapidly over the past few decades and has become a topic of great scientific and public interest. As a result of this rapid growth in interest covering different fields, we are lacking a clear commonly agreed definition of the term "microbiome." Moreover, a consensus on best practices in microbiome research is missing. Recently, a panel of international experts discussed the current gaps in the frame of the European-funded MicrobiomeSupport project. The meeting brought together about 40 leaders from diverse microbiome areas, while more than a hundred experts from all over the world took part in an online survey accompanying the workshop. This article excerpts the outcomes of the workshop and the corresponding online survey embedded in a short historical introduction and future outlook. We propose a definition of microbiome based on the compact, clear, and comprehensive description of the term provided by Whipps et al. in 1988, amended with a set of novel recommendations considering the latest technological developments and research findings. We clearly separate the terms microbiome and microbiota and provide a comprehensive discussion considering the composition of microbiota, the heterogeneity and dynamics of microbiomes in time and space, the stability and resilience of microbial networks, the definition of core microbiomes, and functionally relevant keystone species as well as co-evolutionary principles of microbe-host and inter-species interactions within the microbiome. These broad definitions together with the suggested unifying concepts will help to improve standardization of microbiome studies in the future, and could be the starting point for an integrated assessment of data resulting in a more rapid transfer of knowledge from basic science into practice. Furthermore, microbiome standards are important for solving new challenges associated with anthropogenic-driven changes in the field of planetary health, for which the understanding of microbiomes might play a key role. Video Abstract.


Subject(s)
Microbiota , Terminology as Topic , Surveys and Questionnaires
14.
Microb Ecol ; 80(3): 703-717, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32462391

ABSTRACT

Tripartite interactions among insect vectors, midgut bacteria, and viruses may determine the ability of insects to transmit pathogenic arboviruses. Here, we investigated the impact of gut bacteria on the susceptibility of Culicoides nubeculosus and Culicoides sonorensis biting midges for Schmallenberg virus, and of Aedes aegypti mosquitoes for Zika and chikungunya viruses. Gut bacteria were manipulated by treating the adult insects with antibiotics. The gut bacterial communities were investigated using Illumina MiSeq sequencing of 16S rRNA, and susceptibility to arbovirus infection was tested by feeding insects with an infectious blood meal. Antibiotic treatment led to changes in gut bacteria for all insects. Interestingly, the gut bacterial composition of untreated Ae. aegypti and C. nubeculosus showed Asaia as the dominant genus, which was drastically reduced after antibiotic treatment. Furthermore, antibiotic treatment resulted in relatively more Delftia bacteria in both biting midge species, but not in mosquitoes. Antibiotic treatment and subsequent changes in gut bacterial communities were associated with a significant, 1.8-fold increased infection rate of C. nubeculosus with Schmallenberg virus, but not for C. sonorensis. We did not find any changes in infection rates for Ae. aegypti mosquitoes with Zika or chikungunya virus. We conclude that resident gut bacteria may dampen arbovirus transmission in biting midges, but not so in mosquitoes. Use of antimicrobial compounds at livestock farms might therefore have an unexpected contradictory effect on the health of animals, by increasing the transmission of viral pathogens by biting midges.


Subject(s)
Aedes/virology , Ceratopogonidae/virology , Chikungunya virus/physiology , Gastrointestinal Microbiome/physiology , Insect Vectors/virology , Orthobunyavirus/physiology , Zika Virus/physiology , Animals , Bacterial Physiological Phenomena , Female , Mosquito Vectors/virology
15.
FEMS Microbiol Ecol ; 95(9)2019 09 01.
Article in English | MEDLINE | ID: mdl-31386159

ABSTRACT

Soil microbial communities interact with roots, affecting plant growth and nutrient acquisition. In the present study, we aimed to decipher the effects of the inoculants Trichoderma harzianum T-22, Pseudomonas sp. DSMZ 13134, Bacillus amyloliquefaciens FZB42 or Pseudomonas sp. RU47 on the rhizosphere microbial community and their beneficial effects on tomato plants grown in moderately low phosphorous soil under greenhouse conditions. We analyzed the plant mass, inoculant colony forming units and rhizosphere communities on 15, 22, 29 and 43 days after sowing. Selective plating showed that the bacterial inoculants had a good rhizocompetence and accelerated shoot and root growth and nutrient accumulation. 16S rRNA gene fingerprints indicated changes in the rhizosphere bacterial community composition. Amplicon sequencing revealed that rhizosphere bacterial communities from plants treated with bacterial inoculants were more similar to each other and distinct from those of the control and the Trichoderma inoculated plants at harvest time, and numerous dynamic taxa were identified. In conclusion, likely both, inoculants and the rhizosphere microbiome shifts, stimulated early plant growth mainly by improved spatial acquisition of available nutrients via root growth promotion. At harvest, all tomato plants were P-deficient, suggesting a limited contribution of inoculants and the microbiome shifts to the solubilization of sparingly soluble soil P.


Subject(s)
Agricultural Inoculants/growth & development , Microbiota , Phosphorus/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/microbiology , Agricultural Inoculants/metabolism , Bacillus amyloliquefaciens/growth & development , Bacillus amyloliquefaciens/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Solanum lycopersicum/metabolism , Phosphorus/analysis , Plant Roots/microbiology , Pseudomonas/growth & development , Pseudomonas/metabolism , Rhizosphere , Soil Microbiology , Trichoderma/growth & development , Trichoderma/metabolism
16.
PLoS One ; 9(2): e88429, 2014.
Article in English | MEDLINE | ID: mdl-24533086

ABSTRACT

Bacteria are believed to play an important role in the fitness and biochemistry of sponges (Porifera). Pseudomonas species (Gammaproteobacteria, Pseudomonadales) are capable of colonizing a broad range of eukaryotic hosts, but knowledge of their diversity and function in freshwater invertebrates is rudimentary. We assessed the diversity, structure and antimicrobial activities of Pseudomonas spp. in the freshwater sponge Ephydatia fluviatilis. Polymerase Chain Reaction--Denaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprints of the global regulator gene gacA revealed distinct structures between sponge-associated and free-living Pseudomonas communities, unveiling previously unsuspected diversity of these assemblages in freshwater. Community structures varied across E. fluviatilis specimens, yet specific gacA phylotypes could be detected by PCR-DGGE in almost all sponge individuals sampled over two consecutive years. By means of whole-genome fingerprinting, 39 distinct genotypes were found within 90 fluorescent Pseudomonas isolates retrieved from E. fluviatilis. High frequency of in vitro antibacterial (49%), antiprotozoan (35%) and anti-oomycetal (32%) activities was found among these isolates, contrasting less-pronounced basidiomycetal (17%) and ascomycetal (8%) antagonism. Culture extracts of highly predation-resistant isolates rapidly caused complete immobility or lysis of cells of the protozoan Colpoda steinii. Isolates tentatively identified as P. jessenii, P. protegens and P. oryzihabitans showed conspicuous inhibitory traits and correspondence with dominant sponge-associated phylotypes registered by cultivation-independent analysis. Our findings suggest that E. fluviatilis hosts both transient and persistent Pseudomonas symbionts displaying antimicrobial activities of potential ecological and biotechnological value.


Subject(s)
Antibiosis , Porifera/microbiology , Pseudomonas/physiology , Animals , Biofilms , Gene Expression Regulation, Bacterial , Genome, Bacterial , Genotype , Likelihood Functions , Microbial Sensitivity Tests , Multivariate Analysis , Phylogeny , Polymerase Chain Reaction , Principal Component Analysis , RNA, Ribosomal, 16S/genetics , Species Specificity
17.
Microb Ecol ; 65(1): 232-44, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22903086

ABSTRACT

To understand the functioning of sponges, knowledge of the structure of their associated microbial communities is necessary. However, our perception of sponge-associated microbiomes remains mainly restricted to marine ecosystems. Here, we report on the molecular diversity and composition of bacteria in the freshwater sponge Ephydatia fluviatilis inhabiting the artificial lake Vinkeveense Plassen, Utrecht, The Netherlands. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints revealed that the apparent diversities within the domain Bacteria and the phylum Actinobacteria were lower in E. fluviatilis than in bulk water. Enrichment of specific PCR-DGGE bands in E. fluviatilis was detected. Furthermore, sponge- and bulk water-derived bacterial clone libraries differed with respect to bacterial community composition at the phylum level. E. fluviatilis-derived sequences were affiliated with six recognized phyla, i.e., Proteobacteria, Planctomycetes, Actinobacteria, Bacteroidetes, Chlamydiae and Verrucomicrobia, in order of relative abundance; next to the uncultured candidate phylum TM7 and one deeply rooted bacterial lineage of undefined taxonomy (BLUT). Actinobacteria, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in the freshwater clone library whereas sequences affiliated with Planctomycetes, Verrucomicrobia, Acidobacteria and Armatimonadetes were found at lower frequencies. Fine-tuned phylogenetic inference showed no or negligible overlaps between the E. fluviatilis and water-derived phylotypes within bacterial taxa such as Alphaproteobacteria, Bacteroidetes and Actinobacteria. We also ascertained the status of two alphaproteobacterial lineages as freshwater sponge-specific phylogenetic clusters, and report on high distinctiveness of other E. fluviatilis specific phylotypes, especially within the Bacteroidetes, Planctomycetes and Chlamydia taxa. This study supports the contention that the composition and diversity of bacteria in E. fluviatilis is partially driven by the host organism.


Subject(s)
Bacteria/classification , Metagenome , Phylogeny , Porifera/microbiology , Animals , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , DNA, Bacterial/genetics , Fresh Water/microbiology , Netherlands , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
18.
Appl Environ Microbiol ; 79(4): 1160-70, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23220956

ABSTRACT

In this study, the impacts of six potato (Solanum tuberosum) cultivars with different tuber starch allocations (including one genetically modified [GM] line) on the bacterial communities in field soil were investigated across two growth seasons interspersed with 1 year of barley cultivation, using quantitative PCR, clone library, and PCR-denaturing gradient gel electrophoresis (DGGE) analyses. It was hypothesized that the modifications in the tuber starch contents of these plants, yielding changed root growth rates and exudation patterns, might have elicited altered bacterial communities in the soil. The data showed that bacterial abundances in the bulk soil varied over about 2 orders of magnitude across the 3 years. As expected, across all cultivars, positive potato rhizosphere effects on bacterial abundances were noted in the two potato years. The bulk soil bacterial community structures revealed progressive shifts across time, and moving-window analysis revealed a 60% change over the total experiment. Consistent with previous findings, the community structures in the potato rhizosphere compartments were mainly affected by the growth stage of the plants and, to a lesser extent, by plant cultivar type. The data from the soil under the non-GM potato lines were then taken to define the normal operating range (NOR) of the microbiota under potatoes. Interestingly, the bacterial communities under the GM potato line remained within this NOR. In regard to the bacterial community compositions, particular bacterial species in the soil appeared to be specific to (i) the plant species under investigation (barley versus potato) or, with respect to potatoes, (ii) the plant growth stage. Members of the genera Arthrobacter, Streptomyces, Rhodanobacter, and Dokdonella were consistently found only at the flowering potato plants in both seasons, whereas Rhodoplanes and Sporosarcina were observed only in the soil planted to barley.


Subject(s)
Biota , Metagenome , Soil Microbiology , Solanum tuberosum/growth & development , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Molecular Sequence Data , Polymerase Chain Reaction , Rhizosphere , Sequence Analysis, DNA
19.
J Environ Manage ; 92(3): 780-7, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21035246

ABSTRACT

The influence of aerobic and anaerobic conditions on the survival of the enteropathogens Escherichia coli O157:H7 and Salmonella serovar Typhimurium was investigated in microcosms with broth, cattle manure or slurry. These substrates were inoculated with a green fluorescent protein transformed strain of the enteropathogens at 10(7) cells g(-1) dry weight. Survival data was fitted to the Weibull model. The survival curves in aerobic conditions generally showed a concave curvature, while the curvature was convex in anaerobic conditions. The estimated survival times showed that E. coli O157:H7 survived significantly longer under anaerobic than under aerobic conditions. Survival ranged from approximately. 2 weeks for aerobic manure and slurry to more than six months for anaerobic manure at 16 °C. On average, in 56.3% of the samplings, the number of recovered E. coli O157:H7 cells by anaerobic incubation of Petri plates was significantly (p < 0.05) higher in comparison with aerobic incubation. Survival of Salmonella serovar Typhimurium was not different between aerobic and anaerobic storage of LB broth or manure as well as between aerobic and anaerobic incubation of Petri dishes. The importance of changes in microbial community and chemical composition of manure and slurry was distinguished for the survival of E. coli O157:H7 in different oxygen conditions.


Subject(s)
Escherichia coli O157/physiology , Manure/microbiology , Salmonella enterica/physiology , Aerobiosis , Anaerobiosis , Animals , Cattle
20.
Vector Borne Zoonotic Dis ; 11(5): 523-32, 2011 May.
Article in English | MEDLINE | ID: mdl-21083369

ABSTRACT

In a countrywide investigation of the ecological factors that contribute to Lyme borreliosis risk, a longitudinal study on population dynamics of the sheep tick Ixodes ricinus and their infections with Borrelia burgdorferi sensu lato (s.l.) was undertaken at 24 sites in The Netherlands from July 2006 to December 2007. Study sites were mature forests, dune vegetations, or new forests on land reclaimed from the sea. Ticks were sampled monthly and nymphal ticks were investigated for the presence of Borrelia spp. I. ricinus was the only tick species found. Ticks were found in all sites, but with significant spatial and temporal variations in density between sites. Peak densities were found in July and August, with lowest tick numbers collected in December and January. In some sites, questing activities of I. ricinus nymphs and adults were observed in the winter months. Mean monthly Borrelia infections in nymphs varied from 0% to 29.0% (range: 0%-60%), and several sites had significantly higher mean nymphal Borrelia infections than others. Four genospecies of Borrelia burgdorferi s.l. were found, with B. afzelii being dominant at most sites. Borrelia infection rates in nymphal ticks collected in July, September, and November 2006 were significantly higher (23.7%, p<0.01) than those in the corresponding months of 2007 (9.9%). The diversity in Borrelia genospecies between sites was significantly different (p<0.001). Habitat structure (tree cover) was an effective discriminant parameter in the determination of Borrelia infection risk, as measured by the proportion of nymphal ticks infected with B. burgdorferi s.l. Thickness of the litter layer and moss cover were positively related to nymphal and adult tick densities. The study shows that Borrelia-infected ticks are present in many forest and dune areas in The Netherlands and suggests that in such biotopes, which are used for a wide variety of recreational activities, the infection risk is high.


Subject(s)
Arachnid Vectors/microbiology , Arachnid Vectors/physiology , Borrelia/isolation & purification , Ixodes/microbiology , Ixodes/physiology , Animals , Borrelia Infections/transmission , Ecosystem , Geography , Linear Models , Longitudinal Studies , Lyme Disease/transmission , Netherlands , Nymph/microbiology , Polymerase Chain Reaction , Population Dynamics , Seasons , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...