Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(36): eadi4997, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37672583

ABSTRACT

Fast and accurate detection of nucleic acids is key for pathogen identification. Methods for DNA detection generally rely on fluorescent or colorimetric readout. The development of label-free assays decreases costs and test complexity. We present a novel method combining a one-pot isothermal generation of DNA nanoballs with their detection by electrical impedance. We modified loop-mediated isothermal amplification by using compaction oligonucleotides that self-assemble the amplified target into nanoballs. Next, we use capillary-driven flow to passively pass these nanoballs through a microfluidic impedance cytometer, thus enabling a fully compact system with no moving parts. The movement of individual nanoballs is detected by a change in impedance providing a quantized readout. This approach is flexible for the detection of DNA/RNA of numerous targets (severe acute respiratory syndrome coronavirus 2, HIV, ß-lactamase gene, etc.), and we anticipate that its integration into a standalone device would provide an inexpensive (<$5), sensitive (10 target copies), and rapid test (<1 hour).


Subject(s)
COVID-19 , Nucleic Acids , Humans , DNA , Oligonucleotides , Electronics
SELECTION OF CITATIONS
SEARCH DETAIL
...