Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Inorg Chem ; 26(6): 667-674, 2021 09.
Article in English | MEDLINE | ID: mdl-34378103

ABSTRACT

The known ruthenium complex [Ru(tpy)(bpy)(Hmte)](PF6)2 ([1](PF6)2, where tpy = 2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, Hmte = 2-(methylthio)ethanol) is photosubstitutionally active but non-toxic to cancer cells even upon light irradiation. In this work, the two analogs complexes [Ru(tpy)(NN)(Hmte)](PF6)2, where NN = 3,3'-biisoquinoline (i-biq, [2](PF6)2) and di(isoquinolin-3-yl)amine (i-Hdiqa, [3](PF6)2), were synthesized and their photochemistry and phototoxicity evaluated to assess their suitability as photoactivated chemotherapy (PACT) agents. The increase of the aromatic surface of [2](PF6)2 and [3](PF6)2, compared to [1](PF6)2, leads to higher lipophilicity and higher cellular uptake for the former complexes. Such improved uptake is directly correlated to the cytotoxicity of these compounds in the dark: while [2](PF6)2 and [3](PF6)2 showed low EC50 values in human cancer cells, [1](PF6)2 is not cytotoxic due to poor cellular uptake. While stable in the dark, all complexes substituted the protecting thioether ligand upon light irradiation (520 nm), with the highest photosubstitution quantum yield found for [3](PF6)2 (Φ[3] = 0.070). Compounds [2](PF6)2 and [3](PF6)2 were found both more cytotoxic after light activation than in the dark, with a photo index of 4. Considering the very low singlet oxygen quantum yields of these compounds, and the lack of cytotoxicity of the photoreleased Hmte thioether ligand, it can be concluded that the toxicity observed after light activation is due to the photoreleased aqua complexes [Ru(tpy)(NN)(OH2)]2+, and thus that [2](PF6)2 and [3](PF6)2 are promising PACT candidates.


Subject(s)
Ruthenium Compounds/chemical synthesis , Ruthenium Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Humans , Models, Molecular , Molecular Structure , Ruthenium , Ruthenium Compounds/chemistry
2.
Inorg Chem ; 59(11): 7710-7720, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32396371

ABSTRACT

Studying metal-protein interactions is key for understanding the fate of metallodrugs in biological systems. When a metal complex is not emissive and too weakly bound for mass spectrometry analysis, however, it may become challenging to study such interactions. In this work a synthetic procedure was developed for the alkyne functionalization of a photolabile ruthenium polypyridyl complex, [Ru(tpy)(bpy)(Hmte)](PF6)2, where tpy = 2,2':6',2''-terpyridine, bpy = 2,2'-bipyridine, and Hmte = 2-(methylthio)ethanol. In the functionalized complex [Ru(HCC-tpy)(bpy)(Hmte)](PF6)2, where HCC-tpy = 4'-ethynyl-2,2':6',2''-terpyridine, the alkyne group can be used for bioorthogonal ligation to an azide-labeled fluorophore using copper-catalyzed "click" chemistry. We developed a gel-based click chemistry method to study the interaction between this ruthenium complex and bovine serum albumin (BSA). Our results demonstrate that visualization of the interaction between the metal complex and the protein is possible, even when this interaction is too weak to be studied by conventional means such as UV-vis spectroscopy or ESI mass spectrometry. In addition, the weak metal complex-protein interaction is controlled by visible light irradiation, i.e., the complex and the protein do not interact in the dark, but they do interact via weak van der Waals interactions after light activation of the complex, which triggers photosubstitution of the Hmte ligand.


Subject(s)
Alkynes/chemistry , Coordination Complexes/chemistry , Photosensitizing Agents/chemistry , Ruthenium/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cattle , Click Chemistry , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Photosensitizing Agents/chemical synthesis
3.
J Am Chem Soc ; 141(46): 18444-18454, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31625740

ABSTRACT

Marine alkaloid rigidins are cytotoxic compounds known to kill cancer cells at nanomolar concentrations by targeting the microtubule network. Here, a rigidin analogue containing a thioether group was "caged" by coordination of its thioether group to a photosensitive ruthenium complex. In the dark, the coordinated ruthenium fragment prevented the rigidin analogue from inhibiting tubulin polymerization and reduced its toxicity in 2D cancer cell line monolayers, 3D lung cancer tumor spheroids (A549), and a lung cancer tumor xenograft (A549) in nude mice. Photochemical activation of the prodrug upon green light irradiation led to the photosubstitution of the thioether ligand by water, thereby releasing the free rigidin analogue capable of inhibiting the polymerization of tubulin. In cancer cells, such photorelease was accompanied by a drastic reduction of cell growth, not only when the cells were grown in normoxia (21% O2) but also remarkably in hypoxic conditions (1% O2). In vivo, low toxicity was observed at a dose of 1 mg·kg-1 when the compound was injected intraperitoneally, and light activation of the compound in the tumor led to 30% tumor volume reduction, which represents the first demonstration of the safety and efficacy of ruthenium-based photoactivated chemotherapy compounds in a tumor xenograft.


Subject(s)
Alkaloids/chemistry , Alkaloids/therapeutic use , Lung Neoplasms/drug therapy , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Pyrroles/chemistry , Pyrroles/therapeutic use , Tubulin Modulators/chemistry , Tubulin Modulators/therapeutic use , A549 Cells , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Humans , Light , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Nude , Microtubules/drug effects , Microtubules/metabolism , Microtubules/pathology , Oxygen/metabolism , Prodrugs/chemistry , Prodrugs/therapeutic use , Tumor Hypoxia/drug effects
4.
Angew Chem Int Ed Engl ; 58(28): 9378-9382, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31046177

ABSTRACT

Four-way junctions (4WJs) are supramolecular DNA assemblies comprising four interacting DNA strands that in biology are involved in DNA-damage repair. In this study, a new mononuclear platinum(II) complex 1 was prepared that is capable of driving the crystallization of the DNA oligomer 5'-d(CGTACG)-3' specifically into a 4WJ-like motif. In the crystal structure of the 1-CGTACG adduct, the distorted-square-planar platinum complex binds to the core of the 4WJ-like motif through π-π stacking and hydrogen bonding, without forming any platinum-nitrogen coordination bonds. Our observations suggest that the specific molecular properties of the metal complex are crucially responsible for triggering the selective assembly of this peculiar DNA superstructure.


Subject(s)
DNA/chemistry , Platinum/chemistry , Humans , Models, Molecular , Nucleic Acid Conformation
5.
Dalton Trans ; 47(2): 507-516, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29230469

ABSTRACT

Three new trans-ruthenium(ii) complexes coordinated to tetrapyridyl ligands, namely [Ru(bapbpy)(dmso)Cl]Cl ([2]Cl), [Ru(bapbpy)(Hmte)2](PF6)2 ([3](PF6)2), and [Ru(biqbpy)(Hmte)2](PF6)2 ([4](PF6)2), were prepared as analogues of [Ru(biqbpy)(dmso)Cl]Cl ([1]Cl), a recently described photoactivated chemotherapy agent. The new complexes were characterized, and their crystal structures showed the distorted coordination octahedron typical of this family of complexes. Their photoreactivity in solution was analyzed by spectrophotometry and mass spectrometry, which showed that the sulfur ligand was substituted upon blue light irradiation. The binding of the ruthenium complexes to a reference single-stranded oligonucleotide (s(5'CTACGGTTTCAC3')) was explored both in the dark and under light irradiation by gel electrophoresis and high-resolution mass spectrometry. While adduct formation in the dark was negligible for the four complexes, light irradiation led to the formation of adducts with one or two ruthenium centers per oligonucleotide. The absence of interactions in the dark and the presence of complex-oligonucleotide adducts demonstrate that visible light controls the interaction of these ruthenium complexes with nucleic acids.


Subject(s)
Light , Oligonucleotides/chemistry , Organometallic Compounds/chemistry , Pyridines/chemistry , Ruthenium/chemistry , Base Sequence , Ligands , Models, Molecular , Molecular Conformation , Oligonucleotides/genetics , Organometallic Compounds/chemical synthesis
6.
Chemistry ; 24(11): 2709-2717, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29220545

ABSTRACT

Ruthenium polypyridyl complexes have received widespread attention as potential chemotherapeutics in photodynamic therapy (PDT) and in photochemotherapy (PACT). Here, we investigate a series of sixteen ruthenium polypyridyl complexes with general formula [Ru(tpy)(N-N)(L)]+/2+ (tpy=2,2':6',2''-terpyridine, N-N=bpy (2,2'-bipyridine), phen (1,10-phenanthroline), dpq (pyrazino[2,3-f][1,10]phenanthroline), dppz (dipyrido[3,2-a:2',3'-c]phenazine, dppn (benzo[i]dipyrido[3,2-a:2',3'-c]phenazine), pmip (2-(4-methylphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline), pymi ((E)-N-phenyl-1-(pyridin-2-yl)methanimine), or azpy (2-(phenylazo)pyridine), L=Cl- or 2-(2-(2-(methylthio)ethoxy)ethoxy)ethyl-ß-d-glucopyranoside) and their potential for either PDT or PACT. We demonstrate that although increased lipophilicity is generally related to increased uptake of these complexes, it does not necessarily lead to increased (photo)cytotoxicity. However, the non-toxic complexes are excellent candidates as PACT carriers.

7.
Chemistry ; 22(31): 10960-8, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27373895

ABSTRACT

The crystal structure and in vitro cytotoxicity of the amphiphilic ruthenium complex [3](PF6 )2 are reported. Complex [3](PF6 )2 contains a Ru-S bond that is stable in the dark in cell-growing medium, but is photosensitive. Upon blue-light irradiation, complex [3](PF6 )2 releases the cholesterol-thioether ligand 2 and an aqua ruthenium complex [1](PF6 )2 . Although ligand 2 and complex [1](PF6 )2 are by themselves not cytotoxic, complex [3](PF6 )2 was unexpectedly found to be as cytotoxic as cisplatin in the dark, that is, with micromolar effective concentrations (EC50 ), against six human cancer cell lines (A375, A431, A549, MCF-7, MDA-MB-231, and U87MG). Blue-light irradiation (λ=450 nm, 6.3 J cm(-2) ) had little influence on the cytotoxicity of [3](PF6 )2 after 6 h of incubation time, but it increased the cytotoxicity of the complex by a factor 2 after longer (24 h) incubation. Exploring the unexpected biological activity of [3](PF6 )2 in the dark elucidated an as-yet unknown bifaceted mode of action that depended on concentration, and thus, on the aggregation state of the compound. At low concentration, it acts as a monomer, inserts into the membrane, and can deliver [1](2+) inside the cell upon blue-light activation. At higher concentrations (>3-5 µm), complex [3](PF6 )2 forms supramolecular aggregates that induce non-apoptotic cell death by permeabilizing cell membranes and extracting lipids and membrane proteins.


Subject(s)
Ruthenium/chemistry , Cell Death , Cell Line, Tumor , Humans , Models, Molecular , Molecular Structure
8.
J Inorg Biochem ; 150: 174-81, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26187140

ABSTRACT

Ruthenium polypyridyl complexes may act as light-activatable anticancer prodrugs provided that they are protected by well-coordinated ligands that i) prevent coordination of other biomolecules to the metal center in the dark and ii) can be removed by visible light irradiation. In this paper, the use of monodentate thiol ligands RSH as light-cleavable protecting groups for the ruthenium complex [Ru(tpy)(bpy)(OH2)](PF6)2 ([1](PF6)2; tpy=2,2';6',2″-terpyridine, bpy=2,2'-bypyridine), is investigated. The reaction of [1](2+) with RSH=H2Cys (L-cysteine), H2Acys (N-acetyl-L-cysteine), and HAcysMe (N-acetyl-L-cysteine methyl ester), is studied by UV-visible spectroscopy, NMR spectroscopy, and mass spectrometry. Coordination of the monodentate thiol ligands to the ruthenium complex takes place upon heating to 353 K, but full conversion to the protected complex [Ru(tpy)(bpy)(SR)]PF6 is only possible when a large excess of ligand is used. Isolation and characterization of the two new thiolato complexes [Ru(tpy)(bpy)(κS-HCys)]PF6 ([2]PF6) and [Ru(tpy)(bpy)(κS-HAcys)]PF6 ([3]PF6) is reported. [3]PF6 shows a metal-to-ligand charge-transfer absorption band that is red shifted (λmax=492 nm in water) compared to its methionine analogue [Ru(tpy)(bpy)(κS-HAmet)](Cl)2 ([5](Cl)2, λmax=452 nm; HAmet=N-acetyl-methionine). In the dark the thiolate ligand coordinated to ruthenium is oxidized even by traces of oxygen, which first leads to the sulfenato, sulfinato, and disulfide ruthenium complexes, and finally to the formation of the aqua complex [1](2+). [3]PF6 showed slow photosubstitution of the thiolate ligand by water under blue light irradiation, together with faster photooxidation of the thiolate ligand compared to dark conditions. The use of thiol vs. thioether monodentate ligands is discussed for the protection of anticancer ruthenium-based prodrugs.


Subject(s)
2,2'-Dipyridyl/chemistry , Coordination Complexes/chemistry , Cysteine/analogs & derivatives , Cysteine/chemistry , Ruthenium/chemistry , 2,2'-Dipyridyl/radiation effects , Coordination Complexes/radiation effects , Cysteine/radiation effects , Ligands , Light , Methionine/chemistry , Models, Chemical , Oxidation-Reduction , Oxygen/chemistry , Proton Magnetic Resonance Spectroscopy
9.
ACS Med Chem Lett ; 2(2): 119-23, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-24900289

ABSTRACT

Glucosylceramide synthase (GCS) is an important target for clinical drug development for the treatment of lysosomal storage disorders and a promising target for combating type 2 diabetes. Iminosugars are useful leads for the development of GCS inhibitors; however, the effective iminosugar type GCS inhibitors reported have some unwanted cross-reactivity toward other glyco-processing enzymes. In particular, iminosugar type GCS inhibitors often also inhibit to some extent human acid glucosylceramidase (GBA1) and the nonlysosomal glucosylceramidase (GBA2), the two enzymes known to process glucosylceramide. Of these, GBA1 itself is a potential drug target for the treatment of the lysosomal storage disorder, Gaucher disease, and selective GBA1 inhibitors are sought after as potential chemical chaperones. The physiological importance of GBA2 in glucosylceramide processing in relation to disease states is less clear, and here, selective inhibitors can be of use as chemical knockout entities. In this communication, we report our identification of a highly potent and selective N-alkylated l-ido-configured iminosugar. In particular, the selectivity of 27 for GCS over GBA1 is striking.

SELECTION OF CITATIONS
SEARCH DETAIL