Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 16226, 2024 07 14.
Article in English | MEDLINE | ID: mdl-39003307

ABSTRACT

The classical androgens, testosterone and dihydrotestosterone, together with dehydroepiandrosterone, the precusrsor to all androgens, are generally included in diagnostic steroid evaluations of androgen excess and deficiency disorders and monitored in androgen replacement and androgen suppressive therapies. The C11-oxy androgens also contribute to androgen excess disorders and are still often excluded from clinical and research-based steroids analysis. The contribution of the C11-oxy androgens to the androgen pool has not been considered in androgen deficiency. An exploratory investigation into circulating adrenal and gonadal steroid hormones in men was undertaken as neither the classical androgens nor the C11-oxy androgens have been evaluated in the context of concurrent measurement of all adrenal steroid hormones. Serum androgens, mineralocorticoids, glucocorticoids, progesterones and androgens were assessed in 70 healthy young men using ultra high performance supercritical fluid chromatography and tandem mass spectrometry. Testosterone, 24.5 nmol/L was the most prominent androgen detected in all participants while dihydrotestosterone, 1.23 nmol/L, was only detected in 25% of the participants. The 11-oxy androgens were present in most of the participants with 11-hydroxyandrostenedione, 3.37 nmol, in 98.5%, 11-ketoandrostenedione 0.764 in 77%, 11-hydroxytestosterone, 0.567 in 96% and 11-ketotestosterone: 0.440 in 63%. A third of the participants with normal testosterone and comparable 11-ketotestosterone, had significantly lower dehydroepiandrosterone (p < 0.001). In these males 11-hydroxyandrostenedione (p < 0.001), 11-ketoandrostenedione (p < 0.01) and 11-hydroxytestosterone (p < 0.006) were decreased. Glucocorticoids were also lower: cortisol (p < 0.001), corticosterone (p < 0.001), cortisone (p < 0.006) 11-dehydrocorticosterone (p < 0.001) as well as cortisol:cortisone (p < 0.001). The presence of dehydroepiandrosterone was associated with 16-hydroxyprogesterone (p < 0.001), which was also significantly lower. Adrenal and gonadal steroid analysis showed unexpected steroid heterogeneity in normal young men. Testosterone constitutes 78% of the circulating free androgens with the 11-oxy androgens abundantly present in all participants significantly contributing 22%. In addition, a subset of men were identified with low circulating dehydroepiandrosterone who showed altered adrenal steroids with decreased glucocorticoids and decreased C11-oxy androgens. Analysis of the classical and 11-oxy androgens with the additional measurement of dehydroepiandrosterone and 16-hydroxyprogesterone may allow better diagnostic accuracy in androgen excess or deficiency.


Subject(s)
Androgens , Testosterone , Humans , Male , Adult , Androgens/blood , Young Adult , Testosterone/blood , Testosterone/analogs & derivatives , Gonadal Steroid Hormones/blood , Dehydroepiandrosterone/blood , Dehydroepiandrosterone/analogs & derivatives , Androstenedione/blood , Androstenedione/analogs & derivatives , Tandem Mass Spectrometry , Dihydrotestosterone/blood , Adolescent
2.
Mol Cell Endocrinol ; 585: 112176, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38341019

ABSTRACT

Hyperaldosteronism is often associated with inappropriate aldosterone production and aldosterone synthase (Cyp11b2) expression. Normally, Cyp11b2 expression is limited to the adrenal zona glomerulosa (ZG) and regulated by angiotensin II which signals through Gq protein-coupled receptors. As cells migrate inwards, they differentiate into 11ß-hydroxylase-expressing zona fasciculata (ZF) cells lacking Cyp11b2. The mechanism causing ZG-specific aldosterone biosynthesis is still unclear. We investigated the effect of chronic Gq signaling using transgenic mice with a clozapine N-oxide (CNO)-activated human M3 muscarinic receptor (DREADD) coupled to Gq (hM3Dq) that was expressed throughout the adrenal cortex. CNO raised circulating aldosterone in the presence of a high sodium diet with greater response seen in females compared to males. Immunohistochemistry and transcriptomics indicated disrupted zonal Cyp11b2 expression while Wnt signaling remained unchanged. Chronic Gq-DREADD signaling also induced an intra-adrenal RAAS in CNO-treated mice. Chronic Gq signaling disrupted adrenal cortex zonal aldosterone production associated with ZF expression of Cyp11b2.


Subject(s)
Adrenal Cortex , Hyperaldosteronism , Male , Female , Humans , Mice , Animals , Zona Fasciculata , Aldosterone/metabolism , Adrenal Cortex/metabolism , Zona Glomerulosa/metabolism , Cytochrome P-450 CYP11B2/genetics , Wnt Signaling Pathway , Mice, Transgenic
3.
Methods Enzymol ; 689: 387-431, 2023.
Article in English | MEDLINE | ID: mdl-37802580

ABSTRACT

The "rediscovery" 11ß-hydroxyandrostenedione (11OHA4) placed the spotlight on this unique adrenal-derived hormone with researchers and clinicians once again focusing on the steroid's presence in endocrine pathology. Little was known about the steroid other than its chemical characterisation and that a mitochondrial cytochrome P450 enzyme catalysed the 11ß-hydroxylation of 11OHA4. The fact that neither the biosynthesis nor metabolism of 11OHA4 had been fully characterised presented an ideal opportunity to investigate the metabolic pathways. In addition, methodologies and analytical tools have improved vastly since 11OHA4 was first identified in the 1950s. Cell models, recombinant DNA technology and steroid quantification using liquid chromatography mass spectrometry have greatly facilitated investigations in the field of steroidogenesis. Evident from the structure is that 11OHA4 can be metabolised by hydroxysteroid dehydrogenases and reductases acting on the C4/C5 double bond and on functional moieties at specific carbons on the cyclopentane-perhydro-phenanthrene backbone of the steroid. In this chapter, the biosynthesis and metabolism of 11OHA4 is followed using two strategies that complement each another; (i) human cell models either transiently transfected with recombinant DNA or expressing endogenous steroidogenic enzymes and (ii) steroid identification and quantification using high resolution mass spectrometry. These methodologies have proven invaluable in the determination of 11OHA4's metabolic route. Both strategies are presented with the focus on the accurate identification and quantification of steroids using UHPLC-MS/MS and UPC2-MS/MS. The protocols described in this chapter lay a sound foundation which can aid the researcher and be adapted and implement in future studies.


Subject(s)
Androstenedione , Tandem Mass Spectrometry , Humans , Androstenedione/chemistry , Androstenedione/metabolism , DNA, Recombinant/metabolism , Steroids/chemistry , Steroids/metabolism , Metabolic Networks and Pathways
4.
Int J Mol Sci ; 25(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38203272

ABSTRACT

C11-oxy C19 and C11-oxy C21 steroids have been identified as novel steroids but their function remains unclear. This study aimed to investigate the pre-receptor regulation of C11-oxy steroids by 11ß-hydroxysteroid dehydrogenase (11ßHSD) interconversion and potential agonist and antagonist activity associated with the androgen (AR) and progesterone receptors (PRA and PRB). Steroid conversions were investigated in transiently transfected HEK293 cells expressing 11ßHSD1 and 11ßHSD2, while CV1 cells were utilised for agonist and antagonist assays. The conversion of C11-hydroxy steroids to C11-oxo steroids by 11ßHSD2 occurred more readily than the reverse reaction catalysed by 11ßHSD1, while the interconversion of C11-oxy C19 steroids was more efficient than C11-oxy C21 steroids. Furthermore, 11-ketodihydrotestosterone (11KDHT), 11-ketotestosterone (11KT) and 11ß-hydroxydihydrotestosterone (11OHDHT) were AR agonists, while only progestogens, 11ß-hydroxyprogesterone (11ßOHP4), 11ß-hydroxydihydroprogesterone (11ßOHDHP4), 11α-hydroxyprogesterone (11αOHP4), 11α-hydroxydihydroprogesterone (11αOHDHP4), 11-ketoprogesterone (11KP4), 5α-pregnan-17α-diol-3,11,20-trione (11KPdione) and 21-deoxycortisone (21dE) exhibited antagonist activity. C11-hydroxy C21 steroids, 11ßOHP4, 11ßOHDHP4 and 11αOHP4 exhibited PRA and PRB agonistic activity, while only C11-oxo steroids, 11KP4 and 11-ketoandrostanediol (11K3αdiol) demonstrated PRB agonism. While no steroids antagonised the PRA, 11OHA4, 11ß-hydroxytestosterone (11OHT), 11KT and 11KDHT exhibited PRB antagonism. The regulatory role of 11ßHSD isozymes impacting receptor activation is clear-C11-oxo androgens exhibit AR agonist activity; only C11-hydroxy progestogens exhibit PRA and PRB agonist activity. Regulation by the downstream metabolites of active C11-oxy steroids at the receptor level is apparent-C11-hydroxy and C11-oxo metabolites antagonize the AR and PRB, progestogens the former, androgens the latter. The findings highlight the intricate interplay between receptors and active as well as "inactive" C11-oxy steroids, suggesting novel regulatory tiers.


Subject(s)
Progesterone , Receptors, Steroid , Humans , Receptors, Progesterone , Androgens , Progestins , HEK293 Cells , Steroids , 11-beta-Hydroxysteroid Dehydrogenases
5.
Front Endocrinol (Lausanne) ; 13: 921449, 2022.
Article in English | MEDLINE | ID: mdl-36051386

ABSTRACT

Aldosterone-producing adenoma is a rare cause of hypertension in children. Only a limited number of cases of aldosterone-producing adenomas with somatic KCNJ5 gene mutations have been described in children. Blacks are particularly more susceptible to developing long-standing cardiovascular effects of aldosterone-induced severe hypertension. Somatic CACNA1D gene mutations are particularly more prevalent in black males whereas KCNJ5 gene mutations are most frequently present in black females. We present here a novel somatic KCNJ5 p.I157S mutation in an aldosterone-producing adenoma from a 16-year-old black female whose severe drug-resistant hypertension significantly improved following unilateral adrenalectomy. Prompt diagnosis of aldosterone-producing adenoma and early identification of gene mutation would enable appropriate therapy and significantly reduce cardiovascular sequelae.


Subject(s)
Adenoma , Adrenal Cortex Neoplasms , Adrenocortical Adenoma , Hyperaldosteronism , Hypertension , Adenoma/complications , Adenoma/genetics , Adolescent , Adrenal Cortex Neoplasms/complications , Adrenal Cortex Neoplasms/genetics , Adrenocortical Adenoma/complications , Adrenocortical Adenoma/genetics , Aldosterone , Child , Female , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , Humans , Hyperaldosteronism/genetics , Hypertension/complications , Male , Mutation
6.
Article in English | MEDLINE | ID: mdl-32593151

ABSTRACT

The C11-oxy androgens have been implicated in the progression of many diseases and endocrine-linked disorders, such as polycystic ovarian syndrome (PCOS), congenital adrenal hyperplasia, specifically 21-hydroxylase deficiency (21OHD), castration resistant prostate cancer (CRPC), as well as premature adrenarche. While the C11-oxy C19 steroids have been firmly established in the steroid arena, the C11-oxy C21 steroids are now also of significance. The current study reports on a high-throughput ultra-performance convergence chromatography tandem mass spectrometry (UPC2-MS/MS) method for the separation and quantification of 52 steroids in peripheral serum, which include the C11-oxy C19 and C11-oxy C21 steroids. Fifteen deuterium-labelled steroids were included for absolute quantification, which incorporates steroid extraction efficiency, together with one steroid and four non-steroidal compounds serving as quality controls (QC). The 15 min run-time per sample (16 min injection-to-injection time with an 8-step gradient) quantifies 68 analytes in a 2 µL injection volume. A single chromatographic step simultaneously identifies steroids in the mineralocorticoid, glucocorticoid and androgen pathways in adrenal steroidogenesis, together with steroid metabolites produced in the periphery, presenting an analytical method for the application of screening in vivo clinical samples. This study highlights cross-talk between the C11-oxy steroids, and describes the optimisation of multiple reaction monitoring required to measure steroids accurately. The limit of detection for the steroid metabolites ranged from 0.002 to 20 ng/mL and the limit of quantification from 0.02 to 100 ng/mL. The calibration range for the steroids ranged from 0.002 to 1000 ng/mL and for the QC compounds from 0.075 to 750 ng/mL. The method is fully validated in terms of accuracy (%RSD, <13%), precision (including inter-day variability across a three-day period) (%RSD, <16%), recovery (average 102.42%), matrix effect (ranging from -15.25 to 14.25%) and process efficiency (average 101.79%). The dilution protocol for the steroids, internal standards and QC compounds were validated, while the ion ratios of the steroid metabolites (%RSD, <16%) and QC compounds were monitored and the accuracy bias values (%RSD, <9%) were within acceptable limits. The method was subsequently used to quantify steroid levels in a cohort of healthy women. C11-oxy steroid metabolites produced as intermediates in steroidogenic pathways, together with end-products included in the method can potentially characterise the 11ß-hydroxyandrostenedione-, C21- and C11-oxy backdoor pathways in vivo. The identification of these C11-oxy C19 and C11-oxy C21 intermediates would allow insight into active pathways, while steroid metabolism could be traced in patients and reference ranges established in both normal and abnormal conditions. Furthermore, conditions currently undefined in terms of the C11-oxy steroids would benefit from the analysis provided by this method, while the C11-oxy steroids could be further explored in PCOS, 21OHD, CRPC and adrenarche.


Subject(s)
Chromatography, High Pressure Liquid/methods , Steroids/blood , Tandem Mass Spectrometry/methods , Adult , Female , Humans , Limit of Detection , Linear Models , Reproducibility of Results , Steroids/chemistry , Young Adult
7.
J Steroid Biochem Mol Biol ; 199: 105614, 2020 05.
Article in English | MEDLINE | ID: mdl-32007561

ABSTRACT

Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) plays a pivotal role in the regulation of adrenal and gonadal steroid hormone biosynthesis. More recent studies highlighted the enzyme's role in the backdoor pathway leading to androgen production. Increased CYP17A1 activity in endocrine disorders and diseases are associated with elevated C21 and C19 steroids which include 17α-hydroxyprogesterone and androgens, as well as C11-oxy C21 and C11-oxy C19 steroids. We previously reported that 11ß-hydroxyprogesterone (11OHP4), 21-deoxycortisol (21dF) and their keto derivatives are converted by 5α-reductases and hydroxysteroid dehydrogenases yielding C19 steroids in the backdoor pathway. In this study the 17α-hydroxylase and 17,20-lyase activity of CYP17A1 towards the unconventional C11-oxy C21 steroid substrates and their 5α- and 3α,5α-reduced metabolites was investigated in transfected HEK-293 cells. CYP17A1 catalysed the 17α-hydroxylation of 11OHP4 to 21dF and 11-ketoprogesterone (11KP4) to 21-deoxycortisone (21dE) with negligible hydroxylation of their 5α-reduced metabolites while no lyase activity was detected. The 3α,5α-reduced C11-oxy C21 steroids-5α-pregnan-3α,11ß-diol-20-one (3,11diOH-DHP4) and 5α-pregnan-3α-ol-11,20-dione (alfaxalone) were rapidly hydroxylated to 5α-pregnan-3α,11ß,17α-triol-20-one (11OH-Pdiol) and 5α-pregnan-3α,17α-diol-11,20-dione (11K-Pdiol), with the lyase activity subsequently catalysing to conversion to the C11-oxy C19 steroids, 11ß-hydroxyandrosterone and 11-ketoandrosterone, respectively. Docking of 11OHP4, 11KP4 and the 5α-reduced metabolites, 5α-pregnan-11ß-ol-3,20-dione (11OH-DHP4) and 5α-pregnan-3,11,20-trione (11K-DHP4) with human CYP17A1 showed minimal changes in the orientation of these C11-oxy C21 steroids in the active pocket when compared with the binding of progesterone suggesting the 17,20-lyase is impaired by the C11-hydroxyl and keto moieties. The structurally similar 3,11diOH-DHP4 and alfaxalone showed a greater distance between C17 and the heme group compared to the natural substrate, 17α-hydroxypregnenolone potentially allowing more orientational freedom and facilitating the conversion of the C11-oxy C21 to C11-oxy C19 steroids. In summary, our in vitro assays showed that while CYP17A1 readily hydroxylated 11OHP4 and 11KP4, the enzyme was unable to catalyse the 17,20-lyase reaction of these C11-oxy C21 steroid products. Although CYP17A1 exhibited no catalytic activity towards the 5α-reduced intermediates, once the C4-C5 double bond and the keto group at C3 were reduced, both the hydroxylation and lyase reactions proceeded efficiently. These findings show that the C11-oxy C21 steroids could potentially contribute to the androgen pool in tissue expressing steroidogenic enzymes in the backdoor pathway.


Subject(s)
Hydroxyprogesterones/metabolism , Progesterone/analogs & derivatives , Steroid 17-alpha-Hydroxylase/genetics , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Androgens/biosynthesis , Androgens/genetics , Cell Line, Tumor , Gonadal Steroid Hormones/biosynthesis , Gonadal Steroid Hormones/genetics , HEK293 Cells , Humans , Male , Progesterone/biosynthesis , Progesterone/genetics , Progesterone/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Testosterone/biosynthesis
8.
J Steroid Biochem Mol Biol ; 178: 203-212, 2018 04.
Article in English | MEDLINE | ID: mdl-29277707

ABSTRACT

Increased circulating 11ß-hydroxyprogesterone (11OHP4), biosynthesised in the human adrenal, is associated with 21-hydroxylase deficiency in congenital adrenal hyperplasia. 17α-hydroxyprogesterone levels are also increased, with the steroid's metabolism to dihydrotestosterone in the backdoor pathway contributing to hyperandrogenic clinical conditions. In this study we investigated the in vitro biosynthesis and downstream metabolism of 11OHP4. Both cytochrome P450 11ß-hydroxylase and aldosterone synthase catalyse the biosynthesis of 11OHP4 from progesterone (P4) which is converted to 11-ketoprogesterone (11KP4) by 11ß-hydroxysteroid dehydrogenase type 2, while type 1 readily catalysed the reverse reaction. We showed in HEK-293 cells that these C11-oxy C21 steroids were metabolised by steroidogenic enzymes in the backdoor pathway-5α-reductase (SRD5A) and 3α-hydroxysteroid type 3 (AKR1C2) converted 11OHP4 to 5α-pregnan-11ß-ol,3,20-dione and 5α-pregnan-3α,11ß-diol-20-one, while 11KP4 was converted to 5α-pregnan-3,11,20-trione and 5α-pregnan-3α-ol-11,20-dione (alfaxalone), respectively. Cytochrome P450 17α-hydroxylase/17,20-lyase catalysed the hydroxylase and lyase reaction to produce the C11-oxy C19 steroids demonstrated in the conversion of alfaxalone to 11-oxy steroids demonstrated in the conversion of alfaxalone to 11ketoandrosterone. In LNCaP cells, a prostate cancer cell model endogenously expressing the relevant enzymes, 11OHP4 and 11KP4 were metabolised to the potent androgen, 11-ketodihydrotestosterone (11KDHT), thus suggesting the C11-oxy C21 steroids contribute to the pool of validating the in vitro biosynthesis of C11-oxy C19 steroids from C11-oxy C21 steroids. The in vitro reduction of 11KP4 at C3 and C5 by AKR1C2 and SRD5A has confirmed the metabolic route of the urinary metabolite, 3α,20α-dihydroxy-5ß-pregnan-11-one. Although our assays have demonstrated the conversion of 11OHP4 and 11KP4 by steroidogenic enzymes in the backdoor pathway yielding 11KDHT, thus suggesting the C11-oxy C21 steroids contribute to the pool of potent androgens, the in vivo confirmation of this metabolic route remains challenging.


Subject(s)
Hydroxyprogesterones/metabolism , Progesterone/analogs & derivatives , Prostatic Neoplasms/metabolism , Testosterone/analogs & derivatives , HEK293 Cells , Humans , Hydroxysteroid Dehydrogenases/metabolism , In Vitro Techniques , Male , Progesterone/metabolism , Prostatic Neoplasms/pathology , Steroid 17-alpha-Hydroxylase/metabolism , Testosterone/metabolism , Tumor Cells, Cultured
9.
J Steroid Biochem Mol Biol ; 174: 86-95, 2017 11.
Article in English | MEDLINE | ID: mdl-28774496

ABSTRACT

21-Hydroxylase deficiency presents with increased levels of cytochrome P450 21-hydroxylase substrates, progesterone and 17α-hydroxyprogesterone, which have been implicated in the production of androgens via the backdoor pathway. This study shows the biosynthesis of C11-oxy C21 steroids, 21-deoxycortisol and 21-deoxycortisone, and their metabolism by steroidogenic enzymes in the backdoor pathway yielding novel steroid metabolites: 5α-pregnan-11ß,17α-diol-3,20-dione; 5α-pregnan-17α-ol-3,11,20-trione; 5α-pregnan-3α,11ß,17α-triol-20-one and 5α-pregnan-3α,17α-diol-11,20-dione. The metabolism of 21-deoxycortisol was validated in LNCaP cells expressing the relevant steroidogenic enzymes showing for the first time that the steroid, produced at high levels in 21OHD, is metabolised via the C11-oxy derivatives of 5α-pregnan-17α-ol-3,20-dione and 5α-pregnan-3α,17α-diol-20-one to substrates for the lyase activity of CYP17A1, leading to the production of C11-oxy C19 steroids. 21-Deoxycortisol thus contributes to the pool of potent androgens in 21OHD, with novel steroid metabolites also presenting possible biomarkers in disease identification.


Subject(s)
Oxidoreductases/metabolism , Steroids/biosynthesis , Steroids/metabolism , Adrenal Glands/metabolism , Cell Line, Tumor , Escherichia coli/genetics , HEK293 Cells , Humans , Oxidoreductases/genetics
10.
Mol Cell Endocrinol ; 441: 86-98, 2017 02 05.
Article in English | MEDLINE | ID: mdl-27664517

ABSTRACT

16α-hydroxyprogesterone (16OHP4) is not well characterised in terms of metabolism and receptor interaction. We therefore investigated its metabolism by adrenal CYP11B and peripheral steroidogenic enzymes, SRD5A and AKR1C2. UHPLC-MS/MS analyses identified novel steroids: the biosynthesis of 4-pregnen-11ß,16α-diol-3,20-dione catalysed by CYP11B2; the 5α-reduction of the latter and 16OHP4 catalysed by SRD5A yielding 5α-pregnan-11ß,16α-diol-3,20-diovne and 5α-pregnan-16α-ol-3,20-dione (16OH-DHP4); and 16OH-DHP4 converted by AKR1C2 to 5α-pregnan-3α,16α-diol-20-one. Receptor studies showed 16OHP4, 16OH-DHP4, progesterone and dihydroprogesterone (DHP4) were weak partial AR agonists; 16OHP4, 16OH-DHP4 and DHP4 exhibited weak partial agonist activity towards PR-B with DHP4 also exhibiting partial agonist activity towards PR-A. Data showed that while the 5α-reduction of P4 decreased PR activation significantly, 16OHP4 and 16OH-DHP4 exhibited comparable receptor activation. Although the clinical relevance of 16OHP4 remains unclear the elevated 16OHP4 levels characteristic of 21OHD, CAH, PCOS, prostate cancer, testicular feminization syndrome and cryptorchidism likely contribute towards these clinical conditions, inducing receptor-activated target genes.


Subject(s)
Hydroxyprogesterones/metabolism , Receptors, Androgen/metabolism , Receptors, Progesterone/metabolism , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP11B2/metabolism , HEK293 Cells , Humans , Hydroxylation , Hydroxysteroid Dehydrogenases/metabolism , Membrane Proteins/metabolism , Molecular Weight , Steroid 11-beta-Hydroxylase/metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL