Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Main subject
Publication year range
1.
Beilstein J Nanotechnol ; 14: 1169-1177, 2023.
Article in English | MEDLINE | ID: mdl-38090730

ABSTRACT

Determining the conductivity of molecular layers is a crucial step in advancing towards applications in molecular electronics. A common test bed for fundamental investigations on how to acquire this conductivity are alkanethiol layers on gold substrates. A widely used approach in measuring the conductivity of a molecular layer is conductive atomic force microscopy. Using this method, we investigate the influence of a rougher and a flatter gold substrate on the lateral variation of the conductivity. We find that the roughness of the substrate crucially defines this variation. We conclude that it is paramount to adequately choose a gold substrate for investigations on molecular layer conductivity.

2.
J Chem Phys ; 159(2)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37439474

ABSTRACT

Chirality-induced spin selectivity has been reported in many experiments, but a generally accepted theoretical explanation has not yet been proposed. Here, we introduce a simple model system of a straight cylindrical free-electron wire containing a helical string of atomic scattering centers with spin-orbit interaction. The advantage of this simple model is that it allows deriving analytical expressions for the spin scattering rates, such that the origin of the effect can be easily followed. We find that spin-selective scattering can be viewed as resulting from the constructive interference of partial waves scattered by the spin-orbit terms. We demonstrate that forward scattering rates are independent of spin, while back scattering is spin dependent over wide windows of energy. Although the model does not represent the full details of electron transmission through chiral molecules, it clearly reveals a mechanism that could operate in chiral systems.

3.
Adv Mater ; 34(13): e2106629, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35064943

ABSTRACT

A critical overview of the theory of the chirality-induced spin selectivity (CISS) effect, that is, phenomena in which the chirality of molecular species imparts significant spin selectivity to various electron processes, is provided. Based on discussions in a recently held workshop, and further work published since, the status of CISS effects-in electron transmission, electron transport, and chemical reactions-is reviewed. For each, a detailed discussion of the state-of-the-art in theoretical understanding is provided and remaining challenges and research opportunities are identified.

4.
Nano Lett ; 21(20): 8794-8799, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34652923

ABSTRACT

One-dimensional diffusion of Co adatoms on graphene nanoribbons has been induced and investigated by means of scanning tunnelling microscopy (STM). To this end, the nanoribbons and the Co adatoms have been imaged before and after injecting current pulses into the nanoribbons, with the STM tip in direct contact with the ribbon. We observe current-induced motion of the Co atoms along the nanoribbons, which is approximately described by a distribution expected for a thermally activated one-dimensional random walk. This indicates that the nanoribbons reach temperatures far beyond 100 K, which is well above the temperature of the underlying Au substrate. This model system can be developed further for the study of electromigration at the single-atom level.

5.
Science ; 374(6567): 608-611, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34709897

ABSTRACT

The idea that preformed Cooper pairs could exist in a superconductor at temperatures higher than its zero-resistance critical temperature (Tc) has been explored for unconventional, interfacial, and disordered superconductors, but direct experimental evidence is lacking. We used scanning tunneling noise spectroscopy to show that preformed Cooper pairs exist up to temperatures much higher than Tc in the disordered superconductor titanium nitride by observing an enhancement in the shot noise that is equivalent to a change of the effective charge from one to two electron charges. We further show that the spectroscopic gap fills up rather than closes with increasing temperature. Our results demonstrate the existence of a state above Tc that, much like an ordinary metal, has no (pseudo)gap but carries charge through paired electrons.

6.
Beilstein J Nanotechnol ; 10: 337-348, 2019.
Article in English | MEDLINE | ID: mdl-30800573

ABSTRACT

A new way to control individual molecules and monoatomic chains is devised by preparing a human-machine augmented system in which the operator and the machine are connected by a real-time simulation. Here, a 3D motion control system is integrated with an ultra-high vacuum (UHV) low-temperature scanning tunnelling microscope (STM). Moreover, we coupled a real-time molecular dynamics (MD) simulation to the motion control system that provides a continuous visual feedback to the operator during atomic manipulation. This allows the operator to become a part of the experiment and to make any adaptable tip trajectory that could be useful for atomic manipulation in three dimensions. The strength of this system is demonstrated by preparing and lifting a monoatomic chain of gold atoms from a Au(111) surface in a well-controlled manner. We have demonstrated the existence of Fabry-Pérot-type electronic oscillations in such a monoatomic chain of gold atoms and determined its phase, which was difficult to ascertain previously. We also show here a new geometric procedure to infer the adatom positions and therefore information about the substrate atoms, which are not easily visible on clean metallic surfaces such as gold. This method enables a new controlled atom manipulation technique, which we will refer to as point contact pushing (PCP) technique.

7.
Micromachines (Basel) ; 9(6)2018 May 29.
Article in English | MEDLINE | ID: mdl-30424203

ABSTRACT

Molecular electronics saw its birth with the idea to build electronic circuitry with single molecules as individual components. Even though commercial applications are still modest, it has served an important part in the study of fundamental physics at the scale of single atoms and molecules. It is now a routine procedure in many research groups around the world to connect a single molecule between two metallic leads. What is unknown is the nature of this coupling between the molecule and the leads. We have demonstrated recently (Tewari, 2018, Ph.D. Thesis) our new setup based on a scanning tunneling microscope, which can be used to controllably manipulate single molecules and atomic chains. In this article, we will present the extension of our molecular dynamic simulator attached to this system for the manipulation of single molecules in real time using a graphics processing unit (GPU). This will not only aid in controlled lift-off of single molecules, but will also provide details about changes in the molecular conformations during the manipulation. This information could serve as important input for theoretical models and for bridging the gap between the theory and experiments.

8.
Nano Lett ; 18(4): 2505-2510, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29513997

ABSTRACT

The investigation of the transport properties of single molecules by flowing tunneling currents across extremely narrow gaps is relevant for challenges as diverse as the development of molecular electronics and sequencing of DNA. The achievement of well-defined electrode architectures remains a technical challenge, especially due to the necessity of high precision fabrication processes and the chemical instability of most bulk metals. Here, we illustrate a continuously adjustable tunneling junction between the edges of two twisted graphene sheets. The unique property of the graphene electrodes is that the sheets are rigidly supported all the way to the atomic edge. By analyzing the tunneling current characteristics, we also demonstrate that the spacing across the gap junction can be controllably adjusted. Finally, we demonstrate the transition from the tunneling regime to contact and the formation of an atomic-sized junction between the two edges of graphene.

9.
Int J Mol Sci ; 19(2)2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29438349

ABSTRACT

Ionic liquids have recently been used as means of modulating the charge carrier properties of cuprates. The mechanism behind it, however, is still a matter of debate. In this paper we report experiments on ionic liquid gated ultrathin La2-xSrxCuO4 films. Our results show that the electrostatic part of gating has limited influence in the conductance of the cuprate in the gate voltage range of 0 to - 2 V. A non-electrostatic mechanism takes over for gate voltages below - 2 V. This mechanism most likely changes the oxygen concentration of the film. The results presented are in line with previous X-ray based studies on ionic liquid gating induced oxygenation of the cuprate materials YBa2Cu3O7-x and La2-xSrxCuO4.


Subject(s)
Ionic Liquids/chemistry , Copper/chemistry , Electric Conductivity , Lanthanum/chemistry , Oxides/chemistry , Oxygen/chemistry , Static Electricity , Strontium/chemistry
10.
Beilstein J Nanotechnol ; 8: 2389-2395, 2017.
Article in English | MEDLINE | ID: mdl-29234574

ABSTRACT

Scanning tunneling microscopes (STM) are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, procedures for controlling the atomic-scale shape of STM tips have not been rigorously justified. Here, we present a method for preparing tips in situ while ensuring the crystalline structure and a reproducibly prepared tip structure up to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes.

11.
Rev Sci Instrum ; 88(9): 093903, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28964189

ABSTRACT

Shot noise measurements on atomic and molecular junctions provide rich information about the quantum transport properties of the junctions and on the inelastic scattering events taking place in the process. Dissipation at the nanoscale, a problem of central interest in nano-electronics, can be studied in its most explicit and simplified form. Here, we describe a measurement technique that permits extending previous noise measurements to a much higher frequency range, and to much higher bias voltage range, while maintaining a high accuracy in noise and conductance. We also demonstrate the advantages of having access to the spectral information for diagnostics.

12.
J Nanopart Res ; 19(3): 115, 2017.
Article in English | MEDLINE | ID: mdl-28367069

ABSTRACT

Seed-mediated methods are widely followed for the synthesis of Au nanorods (NRs). However, mostly dilute concentrations of the Au precursor (HAuCl4) are used in the growth solution, which leads to a low final concentration of NRs. Attempts of increasing the concentration of NRs by simply increasing the concentration of HAuCl4, other reagents in the growth solution and seeds lead to a faster growth kinetics which is not favourable for NR growth. Herein, we demonstrate that the increase in growth kinetics for high concentrations of reagents in growth solution can be neutralised by decreasing the pH of the solution. The synthesis of the NRs can be scaled up by using higher concentrations of reagents and adding an optimum concentration of HCl in the growth solution. The concentration of HAuCl4 in the growth solution can be increased up to 5 mM, and 10-20 times more NRs can be synthesised for the same reaction volume compared to that of the conventional seed-mediated method. We have also noticed that a cetyltrimethylammonium bromide (CTAB)-to-HAuCl4 molar ratio of 50 is sufficient for obtaining high yield of NRs.

13.
Beilstein J Nanotechnol ; 6: 2338-44, 2015.
Article in English | MEDLINE | ID: mdl-26734525

ABSTRACT

This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a 'Berry force'. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.

14.
Nanoscale ; 6(21): 13222-7, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25257513

ABSTRACT

We report a seedless protocol based on the oriented attachment of nanoparticles for the synthesis of Au nanoworms (NWs). NWs are grown by reducing HAuCl4 with ascorbic acid (AA) in high pH reaction medium and in the presence of growth directional agents, cetyltrimethylammonium bromide (CTAB) and AgNO3. Although we have used the same reducing and growth directional agents as typically used for the synthesis of Au nanorods, the growth mechanism of NWs is markedly different from that of nanorods. Instead of the anisotropic growth of seed particles, the NWs grow through oriented attachment of nanoparticles. By varying different reaction parameters we have seen that the length of NWs can be controlled from tens of nanometers to a micrometer. Furthermore, the aspect ratio (AR) can be tuned from 2 to 30. This is almost the whole range of AR and length for Au nanorods so far achieved with seed-mediated multiple step synthesis protocols.

15.
Nanotechnology ; 25(3): 035301, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24346261

ABSTRACT

The controlled patterning of anisotropic gold nanoparticles is of crucial importance for many applications related to their optical properties. In this paper, we report that gold nanorods prepared by a seed-mediated synthesis protocol (without any further functionalization) can be selectively deposited on hydrophilic parts of hydrophobic-hydrophilic contrast patterned substrates. We have seen that, when nanorods with lengths much smaller than the width of the hydrophilic stripe are used, they disperse on these stripes with random orientation and tunable uniform particle separation. However, for nanorods having lengths comparable to the width of the hydrophilic stripes, confinement-induced alignment occurs. We observe that different interactions governing the assembly forces can be modulated by controlling the concentration of assembling nanorods and the width of the hydrophilic stripes, leading to markedly different degrees of alignment. Our strategy can be replicated for other anisotropic nanoparticles to produce well-controlled patterning of these nanoentities on surfaces.

16.
Nat Nanotechnol ; 8(4): 282-7, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23503093

ABSTRACT

Metal/organic interfaces critically determine the characteristics of molecular electronic devices, because they influence the arrangement of the orbital levels that participate in charge transport. Studies on self-assembled monolayers show molecule-dependent energy-level shifts as well as transport-gap renormalization, two effects that suggest that electric-field polarization in the metal substrate induced by the formation of image charges plays a key role in the alignment of the molecular energy levels with respect to the metal's Fermi energy. Here, we provide direct experimental evidence for an electrode-induced gap renormalization in single-molecule junctions. We study charge transport through single porphyrin-type molecules using electrically gateable break junctions. In this set-up, the position of the occupied and unoccupied molecular energy levels can be followed in situ under simultaneous mechanical control. When increasing the electrode separation by just a few ångströms, we observe a substantial increase in the transport gap and level shifts as high as several hundreds of meV. Analysis of this large and tunable gap renormalization based on atomic charges obtained from density functional theory confirms and clarifies the dominant role of image-charge effects in single-molecule junctions.

17.
Phys Rev Lett ; 108(14): 146602, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22540815

ABSTRACT

We present shot noise measurements on Au nanowires showing very pronounced vibration-mode features. In accordance to recent theoretical predictions the sign of the inelastic signal, i.e., the signal due to vibration excitations, depends on the transmission probability becoming negative below a certain transmission value. We argue that the negative contribution to noise arises from coherent two-electron processes mediated by electron-phonon scattering and the Pauli exclusion principle. These signals can provide unique information on the local phonon population and lattice temperature of the nanoscale system.

18.
Beilstein J Nanotechnol ; 2: 691-2, 2011.
Article in English | MEDLINE | ID: mdl-22043458
19.
Beilstein J Nanotechnol ; 2: 714-9, 2011.
Article in English | MEDLINE | ID: mdl-22043461

ABSTRACT

We have investigated charge transport in ZnTPPdT-Pyr (TPPdT: 5,15-di(p-thiolphenyl)-10,20-di(p-tolyl)porphyrin) molecular junctions using the lithographic mechanically controllable break-junction (MCBJ) technique at room temperature and cryogenic temperature (6 K). We combined low-bias statistical measurements with spectroscopy of the molecular levels in the form of I(V) characteristics. This combination allows us to characterize the transport in a molecular junction in detail. This complex molecule can form different junction configurations, having an observable effect on the trace histograms and the current-voltage (I(V)) measurements. Both methods show that multiple, stable single-molecule junction configurations can be obtained by modulating the interelectrode distance. In addition we demonstrate that different ZnTPPdT-Pyr junction configurations can lead to completely different spectroscopic features with the same conductance values. We show that statistical low-bias conductance measurements should be interpreted with care, and that the combination with I(V) spectroscopy represents an essential tool for a more detailed characterization of the charge transport in a single molecule.

SELECTION OF CITATIONS
SEARCH DETAIL