Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(4): 109444, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38550993

ABSTRACT

The filamentous cyanobacterium Microcoleus is among the most important global primary producers, especially in hot and cold desert ecosystems. This taxon represents a continuum consisting of a minimum of 12 distinct species with varying levels of gene flow and divergence. The notion of a species continuum is poorly understood in most lineages but is especially challenging in cyanobacteria. Here we show that genomic diversification of the Microcoleus continuum is reflected by morphological adaptation. We compiled a dataset of morphological data from 180 cultured strains and 300 whole genome sequences, including eight herbarium specimens and the type specimen of Microcoleus. We employed a combination of phylogenomic, population genomic, and population-level morphological data analyses to delimit species boundaries. Finally, we suggest that the shape of the filament apices may have an adaptive function to environmental conditions in the soil.

2.
Front Plant Sci ; 7: 973, 2016.
Article in English | MEDLINE | ID: mdl-27462322

ABSTRACT

Following the emergence of the Ug99 lineage of Puccinia graminis f. sp. tritici (Pgt) a collective international effort has been undertaken to identify new sources of wheat stem rust resistance effective against these races. Analyses were undertaken in a collection of wheat genotypes gathered from across Africa to identify stem rust resistance effective against the Pgt races found in Eastern and Southern Africa. The African wheat collection consisted of historic genotypes collected in Kenya, South Africa, Ethiopia, Sudan, Zambia, Morocco, and Tunisia, and current South African breeding lines. Both Bayesian cluster and principal coordinate analyses placed the wheat lines from Sudan in a distinct group, but indicated a degree of genetic relatedness among the other wheat lines despite originating from countries across Africa. Seedling screens with Pgt race PTKST, pedigree information and marker haplotype analysis confirmed the presence of Sr2, Sr36, Sr24, Sr31, and Lr34/Yr18/Sr57 in a number of the lines. A genome-wide association study (GWAS) undertaken with Diversiry Arrays Technology (DArT) and stem rust (Sr) gene associated markers and Stem Area Infected (SAI) and Reaction Type (RT) field phenotypes, collected from trials carried out across two seasons in Kenya in 2009 and in South Africa in 2011, identified 29 marker-trait associations (MTA). Three MTA were in common between SAI and RT, with the biggest effect MTA being found on chromosome 6AS. Two wheat lines, W1406 and W6979 that exhibited high levels of adult plant stem rust resistance were selected to generate bi-parental mapping populations. Only the MTA on chromosomes 6AS and 3BS, and the locus Lr34/Yr18/Sr57 were confirmed following QTL mapping. Additional stem rust resistance QTL, not detected by the GWAS, were found on chromosomes 2BS, 2DL, 3DL, and 4D.

3.
Mol Ecol ; 23(7): 1813-27, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24372777

ABSTRACT

Sequencing of pools of individuals (Pool-Seq) represents a reliable and cost-effective approach for estimating genome-wide SNP and transposable element insertion frequencies. However, Pool-Seq does not provide direct information on haplotypes so that, for example, obtaining inversion frequencies has not been possible until now. Here, we have developed a new set of diagnostic marker SNPs for seven cosmopolitan inversions in Drosophila melanogaster that can be used to infer inversion frequencies from Pool-Seq data. We applied our novel marker set to Pool-Seq data from an experimental evolution study and from North American and Australian latitudinal clines. In the experimental evolution data, we find evidence that positive selection has driven the frequencies of In(3R)C and In(3R)Mo to increase over time. In the clinal data, we confirm the existence of frequency clines for In(2L)t, In(3L)P and In(3R)Payne in both North America and Australia and detect a previously unknown latitudinal cline for In(3R)Mo in North America. The inversion markers developed here provide a versatile and robust tool for characterizing inversion frequencies and their dynamics in Pool-Seq data from diverse D. melanogaster populations.


Subject(s)
Chromosome Inversion , Drosophila melanogaster/genetics , Evolution, Molecular , Genetic Variation , Genetics, Population , Animals , Australia , Genetic Markers , Haplotypes , Karyotyping , Linkage Disequilibrium , North America , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL