Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 352(6281): 84-7, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27034371

ABSTRACT

Global climate change is a major threat to biodiversity. Large-scale analyses have generally focused on the impacts of climate change on the geographic ranges of species and on phenology, the timing of ecological phenomena. We used long-term monitoring of the abundance of breeding birds across Europe and the United States to produce, for both regions, composite population indices for two groups of species: those for which climate suitability has been either improving or declining since 1980. The ratio of these composite indices, the climate impact indicator (CII), reflects the divergent fates of species favored or disadvantaged by climate change. The trend in CII is positive and similar in the two regions. On both continents, interspecific and spatial variation in population abundance trends are well predicted by climate suitability trends.


Subject(s)
Birds , Climate Change , Animal Migration , Animals , Biodiversity , Breeding , Ecological Parameter Monitoring , Europe , Population Dynamics , United States
2.
PLoS One ; 9(10): e110219, 2014.
Article in English | MEDLINE | ID: mdl-25330414

ABSTRACT

Weather extremes may have strong effects on biodiversity, as known from theoretical and modelling studies. Predicted negative effects of increased weather variation are found only for a few species, mostly plants and birds in empirical studies. Therefore, we investigated correlations between weather variability and patterns in occupancy, local colonisations and local extinctions (metapopulation metrics) across four groups of ectotherms: Odonata, Orthoptera, Lepidoptera, and Reptilia. We analysed data of 134 species on a 1×1 km-grid base, collected in the last 20 years from the Netherlands, combining standardised data and opportunistic data. We applied dynamic site-occupancy models and used the results as input for analyses of (i) trends in distribution patterns, (ii) the effect of temperature on colonisation and persistence probability, and (iii) the effect of years with extreme weather on all the three metapopulation metrics. All groups, except butterflies, showed more positive than negative trends in metapopulation metrics. We did not find evidence that the probability of colonisation or persistence increases with temperature nor that extreme weather events are reflected in higher extinction risks. We could not prove that weather extremes have visible and consistent negative effects on ectothermic species in temperate northern hemisphere. These findings do not confirm the general prediction that increased weather variability imperils biodiversity. We conclude that weather extremes might not be ecologically relevant for the majority of species. Populations might be buffered against weather variation (e.g. by habitat heterogeneity), or other factors might be masking the effects (e.g. availability and quality of habitat). Consequently, we postulate that weather extremes have less, or different, impact in real world metapopulations than theory and models suggest.


Subject(s)
Animal Distribution/physiology , Biodiversity , Insecta/physiology , Reptiles/physiology , Weather , Animals , Demography , Models, Biological , Netherlands , Population Dynamics , Species Specificity
3.
Ecol Appl ; 21(7): 2510-20, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22073640

ABSTRACT

The survival of many species in human-dominated, fragmented landscapes depends on metapopulation dynamics, i.e., on a dynamic equilibrium of extinctions and colonizations in patches of suitable habitat. To understand and predict distributional changes, knowledge of these dynamics can be essential, and for this, metapopulation studies are preferably based on long-time-series data from many sites. Alas, such data are very scarce. An alternative is to use opportunistic data (i.e., collected without applying standardized field methods), but these data suffer from large variations in field methods and search intensity between sites and years. Dynamic site-occupancy models offer a general approach to adjust for variable survey effort. These models extend classical metapopulation models to account for imperfect detection of species and yield estimates of the probabilities of occupancy, colonization, and survival of species at sites. By accounting for detection, they fully correct for among-year variability in search effort. As an illustration, we fitted a dynamic site-occupancy model to 60 years of presence-absence data (more precisely, detection-nondetection) of the heathland butterfly Hipparchia semele in The Netherlands. Detection records were obtained from a database containing volunteer-based data from 1950-2009, and nondetection records were deduced from database records of other butterfly species. Our model revealed that metapopulation dynamics of Hipparchia had changed decades before the species' distribution began to contract. Colonization probability had already started to decline from 1950 onward, but this was counterbalanced by an increase in the survival of existing populations, the result of which was a stable distribution. Only from 1990 onward was survival not sufficient to compensate for the further decrease of colonization, and occupancy started to decline. Hence, it appears that factors acting many decades ago triggered a change in the metapopulation dynamics of this species, which ultimately led to a severe decline in occupancy that only became apparent much later. Our study emphasizes the importance of knowledge of changes in survival and colonization of species in modern landscapes over a very long time scale. It also demonstrates the power of site-occupancy modeling to obtain important population dynamics information from databases containing opportunistic sighting records.


Subject(s)
Butterflies/physiology , Ecosystem , Human Activities , Animals , Netherlands , Population Dynamics , Time Factors
4.
Proc Biol Sci ; 277(1685): 1259-66, 2010 Apr 22.
Article in English | MEDLINE | ID: mdl-20018784

ABSTRACT

One consequence of climate change is an increasing mismatch between timing of food requirements and food availability. Such a mismatch is primarily expected in avian long-distance migrants because of their complex annual cycle, and in habitats with a seasonal food peak. Here we show that insectivorous long-distance migrant species in The Netherlands declined strongly (1984-2004) in forests, a habitat characterized by a short spring food peak, but that they did not decline in less seasonal marshes. Also, within generalist long-distance migrant species, populations declined more strongly in forests than in marshes. Forest-inhabiting migrant species arriving latest in spring declined most sharply, probably because their mismatch with the peak in food supply is greatest. Residents and short-distance migrants had non-declining populations in both habitats, suggesting that habitat quality did not deteriorate. Habitat-related differences in trends were most probably caused by climate change because at a European scale, long-distance migrants in forests declined more severely in western Europe, where springs have become considerably warmer, when compared with northern Europe, where temperatures during spring arrival and breeding have increased less. Our results suggest that trophic mismatches may have become a major cause for population declines in long-distance migrants in highly seasonal habitats.


Subject(s)
Animal Migration , Birds/physiology , Climate Change , Ecosystem , Seasons , Animals , Demography , Europe , Trees
5.
Conserv Biol ; 23(4): 957-65, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19637406

ABSTRACT

Analyses of species' population losses typically show a dichotomy between strongly affected, rare, and localized species and apparently unaffected, common, and widespread species. We analyzed 16 years (1992-2007) of butterfly transect count data from The Netherlands in a reevaluation of the trends of common, widespread species. Fifty-five percent (11 of 20 species) of these species suffered severe declines in distribution and abundance. Overall, cumulative butterfly abundance declined by around 30%. Some of the species in decline used to be omnipresent in gardens and parks, and 2 of the species were previously considered agricultural pests. Based on their declines over the last 16 years, 2 of the 20 species (Lasiommata megera and Gonepteryx rhamni) reached endangered status in The Netherlands under the IUCN (International Union for Conservation of Nature) population-decline criterion, and 2 species (Inachis io and Thymelicus lineola) met vulnerable criterion. Butterflies in farmland, urban, and particularly woodland areas showed the largest decline in species abundance. The abundance of species associated with vegetation types found mainly in nature reserves (dunes, heathland, and, to a lesser extent, seminatural grassland) increased or remained stable. The decline of widespread species requires additional conservation strategies in the wider landscape.


Subject(s)
Butterflies , Conservation of Natural Resources , Animals , Biodiversity , Humans , Netherlands , Species Specificity
6.
Oecologia ; 156(1): 227-35, 2008 May.
Article in English | MEDLINE | ID: mdl-18236084

ABSTRACT

Data on the first appearance of species in the field season are widely used in phenological studies. However, there are probabilistic arguments for bias in estimates of phenological change if sampling methods or population abundances change. We examined the importance of bias in three measures of phenological change: (1) the date of the first X appearances, (2) the date of the first Y% of all first appearances and (3) the date of the first Z% of the individuals observed during the entire flight period. These measures were tested by resampling the data of the Dutch Butterfly Monitoring Scheme and by simulations using artificial data. We compared datasets differing in the number of sampling sites, population abundance and the start of the observation period. The date of the first X appearances proved to be sensitive to the number of sampling sites. Both the date of the first X appearances and the date of the first Y% of all first appearances were sensitive to population trend. No such biases were found for estimates of the first Z% of the flight period, but all three measures were sensitive to changes in the start of the observation period. The conclusions were similar for both the study on butterfly data and the simulation study. Bias in phenology assessments based on first appearance data may be considerable and should no longer be ignored in phenological research.


Subject(s)
Bias , Butterflies , Ecology/statistics & numerical data , Animals , Computer Simulation , Monte Carlo Method , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...