Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brachytherapy ; 17(6): 1030-1036, 2018.
Article in English | MEDLINE | ID: mdl-30181054

ABSTRACT

PURPOSE: The direction modulated brachytherapy (DMBT) magnetic resonance-compatible tandem applicator, made from a tungsten alloy rod, has six symmetric peripheral grooves, designed specifically to enhance intensity modulation capacity through achieving directional radiation dose profiles. In this work, the directional dose distributions of the DMBT tandem were modeled and calculated with the Oncentra Brachy advanced collapsed cone engine (ACE), which was validated against Monte Carlo (MC) calculations. METHODS AND MATERIAL: The prototype 3D tandem applicator model was created for use in the Oncentra Brachy treatment planning system. The 192Ir source was placed inside a DMBT tandem in one and six channels as a single dwell position (DP) per channel with the same index length, as well as 1 DP in a standard tandem. Dose distributions were calculated in a water medium by both ACE and MC and compared. RESULTS: For 1DP/6DP inside the DMBT and 1DP inside the standard tandem, respectively, the mean dose differences were 3.5/3.3% and <2.8% with the range of 0.1%-6.5%/0.2%-5% and 0.1%-5%, between ACE and MC, respectively. CONCLUSIONS: The DMBT tandem is successfully modeled in a commercial treatment planning system. The ACE algorithm is capable of accurately calculating highly directional dose distributions generated by a dense tungsten alloy contained within the DMBT tandem, with agreements achieved within <3.5%.


Subject(s)
Brachytherapy/instrumentation , Radiotherapy Planning, Computer-Assisted/instrumentation , Algorithms , Brachytherapy/methods , Humans , Iridium Radioisotopes/administration & dosage , Monte Carlo Method , Phantoms, Imaging , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
2.
Med Phys ; 45(7): 3349-3360, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29729009

ABSTRACT

PURPOSE: To investigate the dose calculation accuracy of the Advanced Collapsed cone Engine (ACE) algorithm for ocular brachytherapy using a COMS plaque loaded with I-125 seeds for two heterogeneous patient tissue scenarios. METHODS: The Oncura model 6711 I-125 seed and 16 mm COMS plaque were added to a research version (v4.6) of the Oncentra® Brachy (OcB) treatment planning system (TPS) for dose calculations using ACE. Treatment plans were created for two heterogeneous cases: (a) a voxelized eye phantom comprising realistic eye materials and densities and (b) a patient CT dataset with variable densities throughout the dataset. ACE dose calculations were performed using a high accuracy mode, high-resolution calculation grid matching the imported CT datasets (0.5 × 0.5 × 0.5 mm3 ), and a user-defined CT calibration curve. The accuracy of ACE was evaluated by replicating the plan geometries and comparing to Monte Carlo (MC) calculated doses obtained using MCNP6. The effects of the heterogeneous patient tissues on the dose distributions were also evaluated by performing the ACE and MCNP6 calculations for the same scenarios but setting all tissues and air to water. RESULTS: Average local percent dose differences between ACE and MC within contoured structures and at points of interest for both scenarios ranged from 1.2% to 20.9%, and along the plaque central axis (CAX) from 0.7% to 7.8%. The largest differences occurred in the plaque penumbra (up to 17%), and at contoured structure interfaces (up to 20%). Other regions in the eye agreed more closely, within the uncertainties of ACE dose calculations (~5%). Compared to that, dose differences between water-based and fully heterogeneous tissue simulations were up to 27%. CONCLUSIONS: Overall, ACE dosimetry agreed well with MC in the tumor volume and along the plaque CAX for the two heterogeneous tissue scenarios, indicating that ACE could potentially be used for clinical ocular brachytherapy dosimetry. In general, ACE data matched the fully heterogeneous MC data more closely than water-based data, even in regions where the ACE accuracy was relatively low. However, depending on the plaque position, doses to critical structures near the plaque penumbra or at tissue interfaces were less accurate, indicating that improvements may be necessary. More extensive knowledge of eye tissue compositions is still required.


Subject(s)
Brachytherapy , Eye Neoplasms/radiotherapy , Eye , Iodine Radioisotopes/therapeutic use , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Algorithms , Brachytherapy/instrumentation , Brachytherapy/methods , Computer Simulation , Eye/diagnostic imaging , Eye/radiation effects , Eye Neoplasms/diagnostic imaging , Female , Humans , Male , Models, Anatomic , Monte Carlo Method , Phantoms, Imaging , Radiometry , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed , Water
3.
Med Phys ; 45(3): 1276-1286, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29383721

ABSTRACT

PURPOSE: To investigate the dose calculation accuracy in water medium of the Advanced Collapsed cone Engine (ACE) for three sizes of COMS eye plaques loaded with low-energy I-125 seeds. METHODS: A model of the Oncura 6711 I-125 seed was created for use with ACE in Oncentra® Brachy (OcB) using primary-scatter separated (PSS) point dose kernel and Task Group (TG) 43 datasets. COMS eye plaque models of diameters 12, 16, and 20 mm were introduced into the OcB applicator library based on 3D CAD drawings of the plaques and Silastic inserts. To perform TG-186 level 1 commissioning, treatment plans were created in OcB for a single source in water and for each COMS plaque in water for two scenarios: with only one centrally loaded seed, or with all seed positions loaded. ACE dose calculations were performed in high accuracy mode with a 0.5 × 0.5 × 0.5 mm3 calculation grid. The resulting dose data were evaluated against Monte Carlo (MC) calculated doses obtained with MCNP6, using both local and global percent differences. RESULTS: ACE doses around the source for the single seed in water agreed with MC doses on average within < 5% inside a 6 × 6 × 6 cm3 region, and within < 1.5% inside a 2 × 2 × 2 cm3 region. The PSS data were generated at a higher resolution within 2 cm from the source, resulting in this improved agreement closer to the source due to fewer approximations in the ACE dose calculation. Average differences in both investigated plaque loading patterns in front of the plaques and on the plaque central axes were ≤ 2.5%, though larger differences (up to 12%) were found near the plaque lip. CONCLUSIONS: Overall, good agreement was found between ACE and MC dose calculations for a single I-125 seed and in front of the COMS plaques in water. More complex scenarios need to be investigated to determine how well ACE handles heterogeneous patient materials.


Subject(s)
Eye Neoplasms/radiotherapy , Iodine Radioisotopes/therapeutic use , Melanoma/radiotherapy , Radiation Dosage , Water , Monte Carlo Method , Radiotherapy Dosage , Software
4.
Med Phys ; 44(10): 5475-5485, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28750134

ABSTRACT

PURPOSE: Most dose calculations for HDR brachytherapy treatments are based on the AAPM-TG43 formalism. Because patient's anatomy, heterogeneities, and applicator shielding are not considered, the dose calculation based on this formalism is inaccurate in some cases. Alternatively, collapsed cone (CC) methods as well as Monte Carlo (MC) algorithms belong to the model-based dose calculation algorithms, which are expected to improve the accuracy of calculated dose distributions. In this work, the performance of a CC algorithm, ACE in Oncentra Brachy 4.5 (ACE 4.5), has been investigated by comparing the calculated dose distributions to the AAPM-TG43 and MC calculations for 10 HDR brachytherapy accelerated partial breast irradiation treatments (APBI). Comparisons were also performed with a corrected version of ACE 4.5 (ACE 4.5/corr). METHODS: The brachytherapy source microSelectron mHDR-v2 (Elekta Brachytherapy) has been implemented in a MC environment and validated by comparing MC dose distributions simulated in a water phantom of 80 cm in diameter with dose distributions calculated with the AAPM-TG43 algorithm. Dose distributions calculated with ACE 4.5, ACE 4.5/corr, AAPM-TG43 formalism, and MC for 10 APBI patients plans have then been computed and compared using HU scaled densities. In addition, individual dose components have been computed using ACE 4.5, ACE 4.5/corr, and MC, and compared individually. RESULTS: Local differences between MC and AAPM-TG43 calculated dose distributions in a large water phantom are < 1%. When using HUs scaled densities for the breast cancer patients, both accuracy levels of ACE 4.5 overestimate the MC calculated dose distributions for all analyzed dosimetric parameters. In the planning target volume (PTV), ACE 4.5 (ACE 4.5/corr) overestimates on average V100%,PTV by 3% ± 1% (1% ± 1%) and D50,PTV by 3% ± 1% (1% ± 1%) and in the organs at risk D1cc, skin by 4% ± 2% (1% ± 1%), D0.5cc, ribs by 4% ± 2% (0% ± 1%), and D1cc, heart by 8% ± 2% (3% ± 1%) compared to MC. Comparisons of the individual dose components reveals an agreement for the primary component of < 2% local differences for both ACE 4.5 and ACE 4.5/corr. Local differences of about 40% (20%) for the first and residual scatter components where observed when using ACE 4.5 (ACE 4.5/corr). Using uniform densities for one case shows a better agreement between ACE 4.5 and MC for all dosimetric parameters considered in this work. CONCLUSIONS: In general, on the 10 APBI patients the ACE 4.5/corr algorithm results in similar dose distributions as the commonly used AAPM-TG43 within the PTV. However, the accuracy of the ACE 4.5/corr calculated dose distribution is closer to MC than to AAPM-TG43. The differences between commercial version ACE 4.5 and MC dose distributions are mainly located in the first and residual scatter components. In ACE 4.5/corr, the changes done in the algorithm for the scatter components substantially reduce these differences.


Subject(s)
Algorithms , Brachytherapy/methods , Breast/radiation effects , Iridium Radioisotopes/therapeutic use , Radiation Dosage , Humans , Monte Carlo Method , Radiotherapy Dosage
5.
Comput Methods Programs Biomed ; 139: 17-29, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28187887

ABSTRACT

BACKGROUND AND OBJECTIVE: Brachytherapy is a form of radiation therapy using sealed radiation sources inserted within or in the vicinity of the tumor of, e.g., gynecological, prostate or head- and neck cancers. Accurate dose calculation is a crucial part of the treatment planning. Several reviews have called for clinical software with model-based algorithms that better take into account the effects of patient individual distribution of tissues, source-channel and shielding attenuation than the commonly employed TG-43 formalism which simply map homogeneous water dose distributions onto the patient. In this paper we give a comprehensive and thorough derivation of such an algorithm based on collapsed cone point-kernel superposition, and describe details of its implementation into a commercial treatment planning system for clinical use. METHODS: A brachytherapy version of the collapsed-cone algorithm using analytical raytraces of the primary photon radiation followed by successive scattering dose calculation for once- and multiply scattered photons is described in detail, including derivation of the corresponding set of recursive equations for energy transport along cone axes/transport lines and the coupling to clinical source modeling. Specific implementation issues for setting up of the calculation grid, handling of intravoxel gradients and voxels partly containing non-patient applicator material are given. RESULTS: Sample runs for two clinical cases are shown, one being a gynecological application with a tungsten-shielded applicator and one a breast implant. These two cases demonstrate the impact of improved dose calculation versus TG-43 formalism. CONCLUSIONS: Use of model-based dose calculation algorithms for brachytherapy taking the three-dimensional treatment geometry into account increases the dosimetric accuracy in planning and follow up of treatments. The comprehensive description and derivations provided gives a rigid background for further clinical, educational and research applications.


Subject(s)
Brachytherapy , Algorithms , Dose-Response Relationship, Radiation , Humans , Monte Carlo Method
SELECTION OF CITATIONS
SEARCH DETAIL
...